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Preface

This document describes an Advanced Interrupt Architecture for RISC-V systems. This specifica-
tion was ratified by the RISC-V International Association in June of 2023.

The table below indicates which chapters of this document specify extensions to the RISC-V ISA
(instruction set architecture) and which are non-ISA.

Chapter ISA?

1. Introduction —
2. Control and Status Registers (CSRs) Added to Harts Yes
3. Incoming MSI Controller (IMSIC) Yes
4. Advanced Platform-Level Interrupt Controller (APLIC) No
5. Interrupts for Machine and Supervisor Levels Yes
6. Interrupts for Virtual Machines (VS Level) Yes
7. Interprocessor Interrupts (IPIs) No
8. IOMMU Support for MSIs to Virtual Machines No

Changes for the ratified version 1.0

Resolved some inconsistencies in Chapter 2 about when to raise a virtual instruction exception
versus an illegal instruction exception.

Changes for RC5 (Ratification Candidate 5)

Better aligned the rules for indirectly accessed registers with the hypervisor extension and with
forthcoming extension Smcsrind/Sscsrind. In particular, when vsiselect has a reserved value,
attempts to access sireg from a virtual machine (VS or VU-mode) should preferably raise an
illegal instruction exception instead of a virtual instruction exception.

Added clarification about the term IOMMU used in Chapter 8.
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ii RISC-V Advanced Interrupt Architecture V1.0

Added clarification about MSI write replaced by MRIF update and notice MSI sent after the
update.

Changes for RC4

For alignment with other forthcoming RISC-V ISA extensions, the widths of the indirect-access
CSRs, miselect, mireg, siselect, sireg, vsiselect, and vsireg, were changed to all be the
current XLEN rather than being tied to their respective privilege levels (previously MXLEN for
miselect and mireg, SXLEN for siselect and sireg, and VSXLEN for vsiselect and vsireg).

Changed the description (but not the actual function) of high-half CSRs and their partner CSRs
to match the latest RISC-V Privileged ISA specification. (An example of a high-half CSR is miph,
and its partner here is mip.)

Changes for RC3

Removed the still-draft Duo-PLIC chapter to a separate document.

Allocated major interrupts 35 and 43 for signaling RAS events (Section 5.1).

In Section 5.3 added the options for bits 1 and 9 to be writable in CSR mvien, and specified the
effects of setting each of these bits.

Upgraded Chapter 8 (“IOMMU Support”) to the frozen state.

Changes for RC2

Clarified that field IID of CSR hvictlmust support all unsigned integer values of the number of bits
implemented for that field, and that writes to hvictl always set IID in the most straightforward
way.

A comment was added to Chapter 7 warning about the possible need for FENCE instructions when
IPIs are sent to other harts by writing MSIs to those harts’ IMSICs.
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Chapter 1

Introduction

This document specifies the Advanced Interrupt Architecture for RISC-V, consisting of: (a) an
extension to the standard Privileged Architecture for RISC-V harts specified in Volume II of The
RISC-V Instruction Set Manual; (b) two standard interrupt controllers for RISC-V systems, an Ad-
vanced Platform-Level Interrupt Controller (APLIC) and an Incoming Message-Signaled Interrupt
Controller (IMSIC); and (c) requirements on other system components concerning interrupts.

Commentary on our design decisions, implementation options, and application is formatted as
in this paragraph, and can be skipped if the reader is only interested in the specification itself.

1.1 Goals

The RISC-V Advanced Interrupt Architecture has these goals:

• Build upon the interrupt-handling functionality of the RISC-V Privileged Architecture, min-
imizing the replacement of existing functionality.

• Provide facilities for RISC-V systems to work directly with message-signaled interrupts (MSIs)
as employed by PCI Express and other device standards, in addition to basic wired interrupts.

• For wired interrupts, define a new Platform-Level Interrupt Controller (the Advanced PLIC,
or APLIC) that has an independent control interface for each level of privilege (such as
RISC-V machine and supervisor levels), and that can convert wired interrupts into MSIs for
systems supporting MSIs.

• Expand the framework for local interrupts at a RISC-V hart.

• Optionally allow software to configure the relative priorities of all sources of interrupts to a
RISC-V hart (including the standard timer and software interrupts, among others), instead
of being limited just to the ability of a separate interrupt controller to prioritize external
interrupts only.

1



2 RISC-V Advanced Interrupt Architecture V1.0

• When harts implement the Privileged Architecture’s hypervisor extension, provide sufficient
assistance for virtualizing these same interrupt facilities for virtual machines.

• With the help of an IOMMU (I/O memory management unit) for redirecting MSIs, maximize
the opportunities and ability for a guest operating system running in a virtual machine to
have direct control of devices with minimal involvement of a hypervisor.

• Avoid having the interrupt hardware be a limiter on the number of virtual machines.

• Achieve all of the above with the best possible compromises between speed, efficiency, and
flexibility of implementation.

This initial version of the Advanced Interrupt Architecture is focused primarily on the needs
of larger, high-performance RISC-V systems. Support is not currently defined for the following
interrupt-handling features that are useful for minimizing interrupt response times in so-called
“real-time” systems but are less appropriate for high-speed processor cores:

• the option to give each interrupt source at a hart a separate trap entry address;
• automatic stacking of register values on interrupt trap entry, and restoration on exit; and
• automatic preemption (nesting) of interrupts at a hart, based on priority.

It is intended that such features optimizing for smaller and/or real-time systems can be developed
as a follow-on extension, either separately or as part of a future version of the interrupt architecture
of this document.

1.2 Limits

In its current version, the RISC-V Advanced Interrupt Architecture can support RISC-V symmet-
ric multiprocessing (SMP) systems with up to 16,384 harts. If the harts are 64-bit (RV64) and
implement the hypervisor extension, and if all features of the Advanced Interrupt Architecture are
fully implemented as well, then for each physical hart there may be up to 63 active virtual harts
and potentially thousands of additional idle (swapped-out) virtual harts, where each virtual hart
has direct control of one or more physical devices.

Table 1.1 summarizes the main limits on the numbers of harts, both physical and virtual, and
the numbers of distinct interrupt identities that may be supported with the Advanced Interrupt
Architecture.

We assume that any single RISC-V computer (or any single node in a cluster or distributed
system) with many thousands of physical harts will probably need an interrupt infrastructure
adapted to the machine’s specific organization, which we do not attempt to predict.
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Maximum Requirements

Physical harts 16,384

Active virtual harts having direct control of 31 for RV32, RISC-V hypervisor extension;
a device, per physical hart 63 for RV64 IMSICs with guest interrupt

files; and an IOMMU

Idle (swapped-out) virtual harts having potentially An IOMMU with support
direct control of a device, per physical hart thousands for memory-resident

interrupt files

Wired interrupts at a single APLIC 1023

Distinct identities usable for MSIs at each 2047 IMSICs
hart (physical or virtual)

Table 1.1: Absolute limits on the numbers of harts and interrupt identities in a system. Individual
implementations are likely to have smaller limits.

1.3 Overview of main components

A RISC-V system’s overall architecture for signaling interrupts depends on whether it is built
mainly for message-signaled interrupts (MSIs) or for more traditional wired interrupts. In systems
with full support for MSIs, every hart has an Incoming MSI Controller (IMSIC) that serves as
the hart’s own private interrupt controller for external interrupts. Conversely, in systems based
primarily on traditional wired interrupts, harts do not have IMSICs. Larger systems, and especially
those with PCI devices, are expected to fully support MSIs by giving harts IMSICs, whereas many
smaller systems may continue to be best served with wired interrupts and simpler harts without
IMSICs.

1.3.1 External interrupts without IMSICs

When RISC-V harts do not have Incoming MSI Controllers, external interrupts are signaled to harts
through dedicated wires. In that case, an Advanced Platform-Level Interrupt Controller (APLIC)
acts as a traditional central hub for interrupts, routing and prioritizing external interrupts for each
hart as illustrated in Figure 1.1. Interrupts may be selectively routed either to machine level or to
supervisor level at each hart. The APLIC is specified in Chapter 4.

Without IMSICs, the current Advanced Interrupt Architecture does not support the direct signaling
of external interrupts to virtual machines, even when RISC-V harts implement the Privileged
Architecture’s hypervisor extension. Instead, an interrupt must be sent to the relevant hypervisor,
which can then choose to inject a virtual interrupt into the virtual machine.

If harts implement the hypervisor extension, it is a topic of ongoing study whether an APLIC
should be allowed to route external interrupts to be the guest external interrupts of the hypervisor
extension, permitting the delivery of interrupts directly to virtual machines without the need for
each signaled interrupt to be handled at the hypervisor level. For now, we assume that systems
that need direct signaling of external interrupts to virtual machines will have IMSICs.
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Figure 1.1: Traditional delivery of wired interrupts to harts without support for MSIs.

Figure 1.2: Interrupt delivery by MSIs when harts have IMSICs for receiving them.
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1.3.2 External interrupts with IMSICs

To be able to receive message-signaled interrupts (MSIs), each RISC-V hart must have an Incoming
MSI Controller (IMSIC) as shown in Figure 1.2. Fundamentally, a message-signaled interrupt is
simply a memory write to a specific address that hardware accepts as indicating an interrupt. To
that end, every IMSIC is assigned one or more distinct addresses in the machine’s address space,
and when a write is made to one of those addresses in the expected format, the receiving IMSIC
interprets the write as an external interrupt for the respective hart.

Because all IMSICs have unique addresses in the machine’s physical address space, every IMSIC
can receive MSI writes from any agent (hart or device) with permission to write to it. IMSICs
have separate addresses for MSIs directed to machine and supervisor levels, in part so the ability
to signal interrupts at each privilege level can be separately granted or denied by controlling write
permissions at the different addresses, and in part to better support virtualizability (pretending
that one privilege level is a higher level). MSIs intended for a hart at a specific privilege level
are recorded within the IMSIC in an interrupt file, which consists mainly of an array of interrupt-
pending bits and a matching array of interrupt-enable bits, the latter indicating which individual
interrupts the hart is currently prepared to receive.

IMSIC units are fully defined in Chapter 3. The format of MSIs used by the RISC-V Advanced
Interrupt Architecture is described in that chapter, Section 3.2.

When the harts in a RISC-V system have IMSICs, the system will normally still contain an APLIC,
but its role is changed. Instead of signaling interrupts to harts directly by wires as in Figure 1.1, an
APLIC converts incoming wired interrupts into MSI writes that are sent to harts via their IMSIC
units. Each MSI is sent to a single target hart according to the APLIC’s configuration set by
software.

If RISC-V harts implement the Privileged Architecture’s hypervisor extension, IMSICs may have
additional guest interrupt files for delivering interrupts to virtual machines. Besides Chapter 3 on
the IMSIC, see Chapter 6 which specifically covers interrupts to virtual machines. If the system also
contains an IOMMU to perform address translation of memory accesses made by I/O devices, then
MSIs from those same devices may require special handling. This topic is addressed in Chapter 8,
“IOMMU Support for MSIs to Virtual Machines.”

1.3.3 Other interrupts

In addition to external interrupts from I/O devices, the RISC-V Privileged Architecture specifies
a few other major classes of interrupts for harts. The Privileged Architecture’s timer interrupts
remain supported in full, and software interrupts remain at least partly supported, although nei-
ther appears in Figures 1.1 and 1.2. For the specifics on software interrupts, refer to Chapter 7,
“Interprocessor Interrupts (IPIs).”

The Advanced Interrupt Architecture adds considerable support for local interrupts at a hart,
whereby a hart essentially interrupts itself in response to asynchronous events, usually errors.
Local interrupts remain contained within a hart (or close to it), so like standard RISC-V timer and
software interrupts, they do not pass through an APLIC or IMSIC.
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1.4 Interrupt identities at a hart

The RISC-V Privileged Architecture gives every interrupt cause at a hart a distinct major identity
number, which is the Exception Code automatically written to CSR mcause or scause on an
interrupt trap. Interrupt causes that are standardized by the Privileged Architecture have major
identities in the range 0–15, while numbers 16 and higher are officially available for platform
standards or for custom use. The Advanced Interrupt Architecture claims further authority over
identity numbers in the ranges 16–23 and 32–47, leaving numbers in the range 24–31 and all
major identities 48 and higher still free for custom use. Table 1.2 characterizes all major interrupt
identities with this extension.

Major identity Minor identity

0 – Reserved by Privileged Architecture

1 – Supervisor software interrupt
2 – Virtual supervisor software interrupt
3 – Machine software interrupt

4 – Reserved by Privileged Architecture

5 – Supervisor timer interrupt
6 – Virtual supervisor timer interrupt
7 – Machine timer interrupt

8 – Reserved by Privileged Architecture

9 Determined by Supervisor external interrupt
10 external interrupt Virtual supervisor external interrupt
11 controller Machine external interrupt

12 – Supervisor guest external interrupt
13 – Counter overflow interrupt

14–15 – Reserved by Privileged Architecture

16–23 – Reserved for standard local interrupts

24–31 – Designated for custom use

32–34 – Reserved for standard local interrupts
35 – Low-priority RAS event interrupt

36–42 – Reserved for standard local interrupts
43 – High-priority RAS event interrupt

44–47 – Reserved for standard local interrupts

≥ 48 – Designated for custom use

Table 1.2: Major and minor identities for all interrupt causes at a hart. Major identities 0–15 are
the purview of the RISC-V Privileged Architecture.

Interrupts from most I/O devices are conveyed to a hart by the external interrupt controller for
the hart, which is either the hart’s IMSIC (Figure 1.2) or an APLIC (Figure 1.1). As Table 1.2
shows, external interrupts at a given privilege level all share a single major identity number: 11 for
machine level, 9 for supervisor level, and 10 for VS-level. External interrupts from different causes
are distinguished from one another at a hart by their minor identity numbers supplied by the
external interrupt controller.
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Other interrupt causes besides external interrupts might also have their own minor identities.
However, this document has need to discuss minor identities only with regard to external interrupts.

The local interrupts defined by the Advanced Interrupt Architecture and their handling are covered
mainly in Chapter 5, “Interrupts for Machine and Supervisor Levels.”

1.5 Selection of harts to receive an interrupt

Each signaled interrupt is delivered to only one hart at one privilege level, usually determined by
software in one way or another. Unlike some other architectures, the RISC-V Advanced Interrupt
Architecture provides no standard hardware mechanism for the broadcast or multicast of interrupts
to multiple harts.

For local interrupts, and for any “virtual” interrupts that software injects into lower privilege levels
at a hart, the interrupts are entirely a local affair at the hart and are never visible to other harts.
The RISC-V Privileged Architecture’s timer interrupts are also uniquely tied to individual harts.
For other interrupts, received by a hart from sources outside the hart, each interrupt signal (whether
delivered by wire or by an MSI) is configured by software to go to only a single hart.

To send an interprocessor interrupt (IPI) to multiple harts, the originating hart need only execute
a loop, sending an individual IPI to each destination hart. For IPIs to a single destination hart,
see Chapter 7.

The effort that a source hart expends in sending individual IPIs to multiple destinations will
invariably be dwarfed by the combined effort at the receiving harts to handle those interrupts.
Hence, providing an automated mechanism for IPI multicast could be expected to reduce a sys-
tem’s total overall work only modestly at best. With a very large number of harts, a hardware
mechanism for IPI multicast must contend with the question of how exactly software specifies
the intended destination set with each use, and furthermore, the actual physical delivery of IPIs
may not differ that much from the software version.

We do not exclude the future possibility of an optional hardware mechanism for multicast
IPI, but only if a significant advantage can be demonstrated in real use. As of 2020, Linux has
been observed not to make use of multicast IPI hardware even on systems that have it.

In the rare event that a single interrupt from an I/O device needs to be communicated to multiple
harts, the interrupt must be sent to a single hart which can then signal the other harts by IPIs.

We contend that the need to communicate an I/O interrupt to multiple harts is sufficiently rare
that standardizing hardware support for multicast cannot be justified in this case.

Along with multicast delivery, other architectures support an option for “1-of-N” delivery of
interrupts, whereby the hardware chooses a single destination hart from among a configured set
of N harts, with the goal of automatic load balancing of interrupt handling among the harts.
Experiments in the 2010s called into question the utility of 1-of-N modes in practice, showing that
software could often do a better job of load balancing than the hardware algorithms implemented
in actual chips. Linux was consequently modified to discontinue using 1-of-N interrupt delivery
even on systems that have it.
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We remain open to the argument that hardware load balancing of interrupt handling may be
beneficial for certain specialized markets, such as networking. However, the claims made so far
in this regard do not justify requiring support for 1-of-N delivery in all RISC-V servers. With
more evidence, some mechanism for 1-of-N delivery might become a future option.

The original Platform-Level Interrupt Controller (PLIC) for RISC-V is configurable so each
interrupt source signals external interrupts to any subset of the harts, potentially all harts.
When multiple harts receive an external interrupt from a single cause at the PLIC, the first hart
to claim the interrupt at the PLIC is the one responsible for servicing it. Usually this sets up a
race, where the subset of harts configured to receive the multicast interrupt all take an external
interrupt trap simultaneously and compete to be the first to claim the interrupt at the PLIC.
The intention is to provide a form of 1-of-N interrupt delivery. However, for all the harts that
fail to win the claim, the interrupt trap becomes wasted effort.

For the reasons already given, the Advanced PLIC supports sending each signaled interrupt
to only a single hart chosen by software, not to multiple harts.

1.6 ISA extensions Smaia and Ssaia

The Advanced Interrupt Architecture (AIA) defines two names for extensions to the RISC-V in-
struction set architecture (ISA), one for machine-level execution environments, and another for
supervisor-level environments. For a machine-level environment, extension Smaia encompasses all
added CSRs and all modifications to interrupt response behavior that the AIA specifies for a hart,
over all privilege levels. For a supervisor-level environment, extension Ssaia is essentially the same
as Smaia except excluding the machine-level CSRs and behavior not directly visible to supervisor
level.

Extensions Smaia and Ssaia cover only those AIA features that impact the ISA at a hart. Although
the following are described or discussed in this document as part of the AIA, they are not implied
by Smaia or Ssaia because the components are categorized as non-ISA: APLICs, IOMMUs, and
any mechanisms for initiating interprocessor interrupts apart from writing to IMSICs.

As revealed in subsequent chapters, the exact set of CSRs and behavior added by the AIA, and
hence implied by Smaia or Ssaia, depends on the base ISA’s XLEN (RV32 or RV64), on whether
S-mode and the hypervisor extension are implemented, and on whether the hart has an IMSIC.
But individual AIA extension names are not provided for each possible valid subset. Rather, the
different combinations are inferable from the intersection of features indicated (such as RV64I +
S-mode + Smaia, but without the hypervisor extension).

Software development tools like compilers and assemblers need not be concerned about whether an
IMSIC exists but should just allow attempts to access the IMSIC CSRs (described in Chapters 2
and 3) if Smaia or Ssaia is indicated. Without an actual IMSIC, such attempts may trap, but that
is not a problem for the development tools.



Chapter 2

Control and Status Registers (CSRs)
Added to Harts

For each privilege level at which a RISC-V hart can take interrupt traps, the Advanced Interrupt
Architecture adds CSRs for interrupt control and handling.

2.1 Machine-level CSRs

Table 2.1 lists both the CSRs added for machine level and existing machine-level CSRs whose size
is changed by the Advanced Interrupt Architecture. Existing CSRs mie, mip, and mideleg are
widended to 64 bits to support a total of 64 interrupt causes.

For RV32, the high-half CSRs listed in the table allow access to the upper 32 bits of registers
mideleg, mie, mvien, mvip, and mip. The Advanced Interrupt Architecture requires that these
high-half CSRs exist for RV32, but the bits they access may all be merely read-only zeros.

CSRs miselect and mireg provide a window for accessing multiple registers beyond the CSRs in
Table 2.1. The value of miselect determines which register is currently accessible through alias
CSR mireg. miselect is a WARL register, and it must support a minimum range of values
depending on the implemented features. When an IMSIC is not implemented, miselect must be
able to hold at least any 6-bit value in the range 0 to 0x3F. When an IMSIC is implemented,
miselect must be able to hold any 8-bit value in the range 0 to 0xFF. Values for miselect in the
range 0 to 0xFF are currently assigned in subranges as follows:

0x00–0x2F reserved
0x30–0x3F major interrupt priorities
0x40–0x6F reserved
0x70–0xFF external interrupts (only with an IMSIC)

miselect may also support values outside the range 0x00–0xFF, though no standard registers are
currently allocated to values above 0xFF.

9
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Number Privilege Width Name Description

Machine-Level Window to Indirectly Accessed Registers

0x350 MRW XLEN miselect Machine indirect register select
0x351 MRW XLEN mireg Machine indirect register alias

Machine-Level Interrupts

0x304 MRW 64 mie Machine interrupt-enable bits
0x344 MRW 64 mip Machine interrupt-pending bits
0x35C MRW MXLEN mtopei Machine top external interrupt (only with an

IMSIC)
0xFB0 MRO MXLEN mtopi Machine top interrupt

Delegated and Virtual Interrupts for Supervisor Level

0x303 MRW 64 mideleg Machine interrupt delegation
0x308 MRW 64 mvien Machine virtual interrupt enables
0x309 MRW 64 mvip Machine virtual interrupt-pending bits

Machine-Level High-Half CSRs (RV32 only)

0x313 MRW 32 midelegh Upper 32 bits of of mideleg (only with S-mode)
0x314 MRW 32 mieh Upper 32 bits of mie
0x318 MRW 32 mvienh Upper 32 bits of mvien (only with S-mode)
0x319 MRW 32 mviph Upper 32 bits of mvip (only with S-mode)
0x354 MRW 32 miph Upper 32 bits of mip

Table 2.1: Machine-level CSRs added or widened by the Advanced Interrupt Architecture.

Values of miselect with the most-significant bit set (bit XLEN - 1 = 1) are designated for cus-
tom use, presumably for accessing custom registers through mireg. If XLEN changes, the most-
significant bit of miselect moves to the new position, retaining its value from before. An imple-
mentation is not required to support any custom values for miselect.

When miselect is a number in a reserved range (currently 0x00–0x2F, 0x40–0x6F, or a number
above 0xFF not designated for custom use), attempts to access mireg will typically raise an illegal
instruction exception.

Normally, the range for external interrupts, 0x70–0xFF, is populated only when an IMSIC is im-
plemented; else, attempts to access mireg when miselect is in this range also cause an illegal
instruction exception. The contents of the external-interrupts region are documented in Chapter 3
on the IMSIC.

CSR mtopei also exists only when an IMSIC is implemented, so is documented in Chapter 3 along
with the indirectly accessed IMSIC registers.

CSR mtopi reports the highest-priority interrupt that is pending and enabled for machine level, as
specified in Section 5.2.2.

When S-mode is implemented, CSRs mvien and mvip support interrupt filtering and virtual inter-
rupts for supervisor level. These facilities are explained in Section 5.3.
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If extension Smcsrind is also implemented, then when miselect has a value in the range 0x30–0x3F
or 0x70–0xFF, attempts to access alias CSRs mireg2 through mireg6 raise an illegal instruction
exception.

2.2 Supervisor-level CSRs

Table 2.2 lists the supervisor-level CSRs that are added and existing CSRs that are widened to
64 bits, if the hart implements S-mode. The functions of these registers all match their machine-
level counterparts.

Number Privilege Width Name Description

Supervisor-Level Window to Indirectly Accessed Registers

0x150 SRW XLEN siselect Supervisor indirect register select
0x151 SRW XLEN sireg Supervisor indirect register alias

Supervisor-Level Interrupts

0x104 SRW 64 sie Supervisor interrupt-enable bits
0x144 SRW 64 sip Supervisor interrupt-pending bits
0x15C SRW SXLEN stopei Supervisor top external interrupt (only

with an IMSIC)
0xDB0 SRO SXLEN stopi Supervisor top interrupt

Supervisor-Level High-Half CSRs (RV32 only)

0x114 SRW 32 sieh Upper 32 bits of sie
0x154 SRW 32 siph Upper 32 bits of sip

Table 2.2: Supervisor-level CSRs added or widened by the Advanced Interrupt Architecture.

The space of registers accessible through the siselect/sireg window is separate from but parallels
that of machine level, being for supervisor-level interrupts instead of machine-level interrupts. The
allocated values for siselect in the range 0 to 0xFF are once again these:

0x00–0x2F reserved
0x30–0x3F major interrupt priorities
0x40–0x6F reserved
0x70–0xFF external interrupts (only with an IMSIC)

For maximum compatibility, it is recommended that siselect support at least a 9-bit range, 0 to
0x1FF, regardless of whether an IMSIC exists.

Because the VS CSR vsiselect (Section 2.3) always has at least 9 bits, and like other VS
CSRs, vsiselect substitutes for siselect when executing in a virtual machine (VS-mode or
VU-mode), implementing a smaller range for siselect allows software to discover it is not
running in a virtual machine.

Like miselect, values of siselect with the most-significant bit set (bit XLEN - 1 = 1) are des-
ignated for custom use. If XLEN changes, the most-significant bit of siselect moves to the new
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position, retaining its value from before. An implementation is not required to support any custom
values for siselect.

When siselect is a number in a reserved range (currently 0x00–0x2F, 0x40–0x6F, or a number
above 0xFF not designated for custom use), or in the range 0x70–0xFF when there is no IMSIC,
attempts to access sireg should preferably raise an illegal instruction exception (unless executing
in a virtual machine, covered in the next section).

Note that the widths of siselect and sireg are always the current XLEN rather than SXLEN.
Hence, for example, if MXLEN = 64 and SXLEN = 32, then these registers are 64 bits when the
current privilege mode is M (running RV64 code) but 32 bits when the privilege mode is S (RV32
code).

CSR stopei is described with the IMSIC in Chapter 3.

Register stopi reports the highest-priority interrupt that is pending and enabled for supervisor
level, as specified in Section 5.4.2.

If extension Sscsrind is also implemented, then when siselect has a value in the range 0x30–0x3F
or 0x70–0xFF, attempts to access alias CSRs sireg2 through sireg6 raise an illegal instruction
exception (unless executing in a virtual machine, covered in the next section).

2.3 Hypervisor and VS CSRs

If a hart implements the Privileged Architecture’s hypervisor extension, then the hypervisor and
VS CSRs listed in Table 2.3 are also either added or widened to 64 bits.

The new hypervisor CSRs in the table (hvien, hvictl, hviprio1, and hviprio2) augment hvip for
injecting interrupts into VS level. The use of these registers is covered in Chapter 6 on interrupts
for virtual machines.

The new VS CSRs (vsiselect, vsireg, vstopei, and vstopi) all match supervisor CSRs, and sub-
stitute for those supervisor CSRs when executing in a virtual machine (in VS-mode or VU-mode).

CSR vsiselect is required to support at least a 9-bit range of 0 to 0x1FF, whether or not an
IMSIC is implemented. As with siselect, values of vsiselect with the most-significant bit set
(bit XLEN - 1 = 1) are designated for custom use. If XLEN changes, the most-significant bit of
vsiselect moves to the new position, retaining its value from before.

Like siselect and sireg, the widths of vsiselect and vsireg are always the current XLEN
rather than VSXLEN. Hence, for example, if HSXLEN = 64 and VSXLEN = 32, then these
registers are 64 bits when accessed by a hypervisor in HS-mode (running RV64 code) but 32 bits
for a guest OS in VS-mode (RV32 code).
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Number Privilege Width Name Description

Delegated and Virtual Interrupts, Interrupt Priorities, for VS Level

0x603 HRW 64 hideleg Hypervisor interrupt delegation
0x608 HRW 64 hvien Hypervisor virtual interrupt enables
0x609 HRW HSXLEN hvictl Hypervisor virtual interrupt control
0x645 HRW 64 hvip Hypervisor virtual interrupt-pending bits
0x646 HRW 64 hviprio1 Hypervisor VS-level interrupt priorities
0x647 HRW 64 hviprio2 Hypervisor VS-level interrupt priorities

VS-Level Window to Indirectly Accessed Registers

0x250 HRW XLEN vsiselect Virtual supervisor indirect register select
0x251 HRW XLEN vsireg Virtual supervisor indirect register alias

VS-Level Interrupts

0x204 HRW 64 vsie Virtual supervisor interrupt-enable bits
0x244 HRW 64 vsip Virtual supervisor interrupt-pending bits
0x25C HRW VSXLEN vstopei Virtual supervisor top external interrupt (only

with an IMSIC)
0xEB0 HRO VSXLEN vstopi Virtual supervisor top interrupt

Hypervisor and VS-Level High-Half CSRs (RV32 only)

0x613 HRW 32 hidelegh Upper 32 bits of hideleg
0x618 HRW 32 hvienh Upper 32 bits of hvien
0x655 HRW 32 hviph Upper 32 bits of hvip
0x656 HRW 32 hviprio1h Upper 32 bits of hviprio1
0x657 HRW 32 hviprio2h Upper 32 bits of hviprio2
0x214 HRW 32 vsieh Upper 32 bits of vsie
0x254 HRW 32 vsiph Upper 32 bits of vsip

Table 2.3: Hypervisor and VS CSRs added or widened by the Advanced Interrupt Architecture.
(Parameter HSXLEN is just another name for SXLEN for hypervisor-extended S-mode).

The space of registers selectable by vsiselect is more limited than for machine and supervisor
levels:

0x000–0x02F reserved
0x030–0x03F inaccessible
0x040–0x06F reserved
0x070–0x0FF external interrupts (IMSIC only), or inaccessible
0x100–0x1FF reserved

For alias CSRs sireg and vsireg, the hypervisor extension’s usual rules for when to raise a virtual
instruction exception (based on whether an instruction is HS-qualified) are not applicable. The rules
given in this section for sireg and vsireg apply instead, unless overridden by the requirements of
Section 2.5, which take precedence over this section when extension Smstateen is also implemented.

A virtual instruction exception is raised for attempts from VS-mode or VU-mode to directly access
vsireg, or attempts from VU-mode to access sireg.
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When vsiselect has a reserved value (including values above 0x1FF not designated for custom
use), attempts from M-mode or HS-mode to access vsireg, or from VS-mode to access sireg

(really vsireg), should preferably raise an illegal instruction exception.

When vsiselect has the number of an inaccessible register, attempts from M-mode or HS-mode
to access vsireg raise an illegal instruction exception, and attempts from VS-mode to access sireg
(really vsireg) raise a virtual instruction exception.

Requiring a range of 0–0x1FF for vsiselect, even though most or all of the space is reserved
or inaccessible, permits a hypervisor to emulate indirectly accessed registers in the implemented
range, including registers that may be standardized in the future at locations 0x100–0x1FF.

The indirectly accessed registers for external interrupts (numbers 0x70–0xFF) are accessible only
when field VGEIN of hstatus is the number of an implemented guest external interrupt, not
zero. If VGEIN is not the number of an implemented guest external interrupt (including the case
when no IMSIC is implemented), then all indirect register numbers in the ranges 0x030–0x03F and
0x070–0x0FF designate an inaccessible register at VS level.

Along the same lines, when hstatus.VGEIN is not the number of an implemented guest external
interrupt, attempts from M-mode or HS-mode to access CSR vstopei raise an illegal instruction
exception, and attempts from VS-mode to access stopei raise a virtual instruction exception.

If extension Sscsrind is also implemented, then when vsiselect has a value in the range 0x30–0x3F
or 0x70–0xFF, attempts from M-mode or HS-mode to access alias CSRs vsireg2 through vsireg6

raise an illegal instruction exception, and attempts from VS-mode to access sireg2 through sireg6

raise a virtual instruction exception.

2.4 Virtual instruction exceptions

Following the default rules for the hypervisor extension, attempts from VS-mode to directly access
a hypervisor or VS CSR other than vsireg, or from VU-mode to access any supervisor-level CSR
(including hypervisor and VS CSRs) other than sireg or vsireg, usually raise not an illegal
instruction exception but instead a virtual instruction exception. For details, see the RISC-V
Privileged Architecture.

Instructions that read/write CSR stopei or vstopei are considered to be HS-qualified unless all
of following are true: the hart has an IMSIC, extension Smstateen is implemented, and bit 58 of
mstateen0 is zero. (See the next section, 2.5, about mstateen0.)

For sireg and vsireg, see both the previous section, 2.3, and the next, 2.5, for when a virtual
instruction exception is required instead of an illegal instruction exception.
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2.5 Access control by the state-enable CSRs

If extension Smstateen is implemented together with the Advanced Interrupt Architecture (AIA),
three bits of state-enable register mstateen0 control access to AIA-added state from privilege modes
less privileged than M-mode:

bit 60 CSRs siselect, sireg, vsiselect, and vsireg

bit 59 all other state added by the AIA and not controlled by bits 60 and 58
bit 58 all IMSIC state, including CSRs stopei and vstopei

If one of these bits is zero in mstateen0, an attempt to access the corresponding state from a
privilege mode less privileged than M-mode results in an illegal instruction trap. As always, the
state-enable CSRs do not affect the accessibility of any state when in M-mode, only in less privileged
modes. For more explanation, see the documentation for extension Smstateen.

Bit 59 controls access to AIA CSRs siph, sieh, stopi, hidelegh, hvien/hvienh, hviph,
hvictl, hviprio1/hviprio1h, hviprio2/hviprio2h, vsiph, vsieh, and vstopi, as well as to
the supervisor-level interrupt priorities accessed through siselect + sireg (the iprio array of
Section 5.4.1).

Bit 58 is implemented in mstateen0 only if the hart has an IMSIC. If the hypervisor extension is
also implemented, this bit does not affect the behavior or accessibility of hypervisor CSRs hgeip
and hgeie, or field VGEIN of hstatus. In particular, guest external interrupts from an IMSIC
continue to be visible to HS-mode in hgeip even when bit 58 of mstateen0 is zero.

An earlier, pre-ratification draft of Smstateen said that when bit 58 of mstateen0 is zero, reg-
isters hgeip and hgeie and field VGEIN of hstatus are all read-only zeros. That effect is no
longer correct.

If the hart does not have an IMSIC, bit 58 of mstateen0 is read-only zero, but Smstateen has no
effect on attempts to access the nonexistent IMSIC state.

This means in particular that, when the hart does not have an IMSIC, the following raise a
virtual instruction exception as described in Section 2.3, not an illegal instruction exception,
despite that bit 58 of mstateen0 is zero:

• attempts from VS-mode to access sireg (really vsireg) while vsiselect has a value in
the range 0x70–0xFF; and

• attempts from VS-mode to access stopei (really vstopei).

If bit 60 of mstateen0 is one, then regardless of any other mstateen bits (including bits 58 and 59
of mstateen0), a virtual instruction exception is raised as described in Section 2.3 for all attempts
from VS-mode or VU-mode to directly access vsireg, and for all attempts from VU-mode to access
sireg. This behavior is overridden only when bit 60 of mstateen0 is zero.
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If the hypervisor extension is implemented, the same three bits are defined also in hypervisor
CSR hstateen0 but concern only the state potentially accessible to a virtual machine executing in
privilege modes VS and VU:

bit 60 CSRs siselect and sireg (really vsiselect and vsireg)
bit 59 CSRs siph and sieh (RV32 only) and stopi (really vsiph, vsieh, and vstopi)
bit 58 all state of IMSIC guest interrupt files, including CSR stopei (really vstopei)

If one of these bits is zero in hstateen0, and the same bit is one in mstateen0, then an attempt
to access the corresponding state from VS or VU-mode raises a virtual instruction exception.
(But note that, for high-half CSRs siph and sieh, this applies only when XLEN = 32. When
XLEN > 32, an attempt to access siph or sieh raises an illegal instruction exception as usual, not
a virtual instruction exception.)

If bit 60 is one in mstateen0 but is zero in hstateen0, then all attempts from VS or VU-mode to
access siselect or sireg raise a virtual instruction exception, not an illegal instruction exception,
regardless of the value of vsiselect or any other mstateen bits.

Bit 58 is implemented in hstateen0 only if the hart has an IMSIC. Furthermore, even with an
IMSIC, bit 58 may (or may not) be read-only zero in hstateen0 if the IMSIC has no guest interrupt
files for guest external interrupts (Chapter 3). When this bit is zero (whether read-only zero or
set to zero), a virtual machine is prevented from accessing the hart’s IMSIC the same as when
hstatus.VGEIN = 0.

Extension Ssstateen is defined as the supervisor-level view of Smstateen. Therefore, the combina-
tion of Ssaia and Ssstateen incorporates the bits defined above for hstateen0 but not those for
mstateen0, since machine-level CSRs are not visible to supervisor level.



Chapter 3

Incoming MSI Controller (IMSIC)

An Incoming MSI Controller (IMSIC) is an optional RISC-V hardware component that is closely
coupled with a hart, one IMSIC per hart. An IMSIC receives and records incoming message-
signaled interrupts (MSIs) for a hart, and signals to the hart when there are pending and enabled
interrupts to be serviced.

An IMSIC has one or more memory-mapped registers in the machine’s address space for receiving
MSIs. Aside from those memory-mapped registers, software interacts with an IMSIC primarily
through several RISC-V CSRs at the attached hart.

3.1 Interrupt files and interrupt identities

In a RISC-V system, MSIs are directed not just to a specific hart but to a specific privilege level
of a specific hart, such as machine or supervisor level. Furthermore, when a hart implements the
hypervisor extension, an IMSIC may optionally allow MSIs to be directed to a specific virtual hart
at virtual supervisor level (VS level).

For each privilege level and each virtual hart to which MSIs may be directed at a hart, the hart’s
IMSIC contains a separate interrupt file. Assuming a hart implements supervisor mode, its IMSIC
has at least two interrupt files, one for machine level and the other for supervisor level. When a
hart also implements the hypervisor extension, its IMSIC may have additional interrupt files for
virtual harts, called guest interrupt files. The number of guest interrupt files an IMSIC has for
virtual harts is exactly GEILEN, the number of supported guest external interrupts, as defined for
the hypervisor extension by the RISC-V Privileged Architecture.

Each individual interrupt file consists mainly of two arrays of bits of the same size, one array for
recording MSIs that have arrived but are not yet serviced (interrupt-pending bits), and the other
array for specifying which interrupts the hart will currently accept (interrupt-enable bits). Each bit
position in the two arrays corresponds with a different interrupt identity number by which MSIs
from different sources are distinguished at an interrupt file. Because an IMSIC is the external
interrupt controller for a hart, an interrupt file’s interrupt identities become the minor identities
for external interrupts at the attached hart.

17
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The number of interrupt identities supported by an interrupt file (and hence the number of active
bits in each array) is one less than a multiple of 64, and may be a minimum of 63 and a maximum
of 2047.

Platform standards may increase the minimum number of interrupt identities that must be im-
plemented by each interrupt file.

When an interrupt file supports N distinct interrupt identities, valid identity numbers are between
1 and N inclusive. The identity numbers within this range are said to be implemented by the
interrupt file; numbers outside this range are not implemented. The number zero is never a valid
interrupt identity.

IMSIC hardware does not assume any connection between the interrupt identity numbers at one
interrupt file and those at another interrupt file. Software is commonly expected to assign the same
interrupt identity number to different MSI sources at different interrupt files, without coordination
across interrupt files. Thus the total number of MSI sources that can be separately distinguished
within a system is potentially the product of the number of interrupt identities at a single interrupt
file times the total number of interrupt files in the system, over all harts.

It is not necessarily the case that all interrupt files in a system are the same size (implement
the same number of interrupt identities). For a given hart, the interrupt files for guest external
interrupts must all be the same size, but the interrupt files at machine level and at supervisor
level may differ in size from those of guest external interrupts, and from each other. Likewise, the
interrupt files of different harts may be different sizes.

A platform might provide a means for software to configure the number of interrupt files in an
IMSIC and/or their sizes, such as by allowing a smaller interrupt file at machine level to be traded
for a larger one at supervisor level, or vice versa, for example. Any such configurability is outside
the scope of this specification. It is recommended, however, that only machine level be given the
power to change the number and sizes of interrupt files in an IMSIC.

3.2 MSI encoding

Established standards (in particular, for PCI and PCI Express) dictate that an individual message-
signaled interrupt (MSI) from a device takes the form of a naturally aligned 32-bit write by the
device, with the address and value both configured at the device (or device controller) by software.
Depending on the versions of the standards to which a device or controller conforms, the address
might be restricted to the lower 4-GiB (32-bit) range, and the value written might be limited to a
16-bit range, with the upper 16 bits always being zeros.

When RISC-V harts have IMSICs, an MSI from a device is normally sent directly to an individual
hart that was selected by software to handle the interrupt (presumably based on some interrupt
affinity policy). An MSI is directed to a specific privilege level, or to a specific virtual hart, via
the corresponding interrupt file that exists in the receiving hart’s IMSIC. The MSI write address
is the physical address of a particular word-size register that is physically connected to the target
interrupt file. The MSI write data is simply the identity number of the interrupt to be made
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pending in that interrupt file (becoming eventually the minor identity for an external interrupt to
the attached hart).

By configuring an MSI’s address and data at a device, system software fully controls: (a) which
hart receives a particular device interrupt, (b) the target privilege level or virtual hart, and (c) the
identity number that represents the MSI in the target interrupt file. Elements a and b are deter-
mined by which interrupt file is targeted by the MSI address, while element c is communicated by
the MSI data.

As the maximum interrupt identity number an IMSIC can support is 2047, a 16-bit limit on
MSI data values presents no problem.

When the hypervisor extension is implemented and a device is being managed directly by a guest
operating system, MSI addresses from the device are initially guest physical addresses, as they are
configured at the device by the guest OS. These guest addresses must be translated by an IOMMU,
which gets configured by the hypervisor to redirect those MSIs to the interrupt files for the correct
guest external interrupts. For more on this topic, see Chapter 8.

3.3 Interrupt priorities

Within a single interrupt file, interrupt priorities are determined directly from interrupt identity
numbers. Lower identity numbers have higher priority.

Because MSIs give software complete control over the assignment of identity numbers in an
interrupt file, software is free to select identity numbers that reflect the relative priorities desired
for interrupts.

It is true that software could adjust interrupt priorities more dynamically if interrupt files
included an array of priority numbers to assign to each interrupt identity. However, we believe
that such additional flexibility would not be utilized often enough to justify the extra hardware
expense. In fact, for many systems currently employing MSIs, it is common practice for software
to ignore interrupt priorities entirely and act as though all interrupts had equal priority.

An interrupt file’s lowest identity numbers have been given the highest priorities, not the reverse
order, because it is only for the highest-priority interrupts that priority order may need to be
carefully managed, yet it is the low-numbered identities, 1 through 63 (or perhaps 1 through 255),
that are guaranteed to exist across all systems. Consider, for example, that an interrupt file’s
highest-priority interrupt—presumably the most time-critical—is always identity number 1. If
priority order were reversed, the highest-priority interrupt would have different identity numbers
on different machines, depending on how many identities are implemented by interrupt files.
The ability for software to assign fixed identity numbers to the highest-priority interrupts is
considered worth any discomfort that may be felt from interrupt priorities being the reverse of
the natural number order.
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3.4 Reset and revealed state

Upon reset of an IMSIC, all the state of its interrupt files becomes valid and consistent but otherwise
unspecified, except possibly for the eidelivery register of machine-level and supervisor-level
interrupt files, as specified in Section 3.8.1.

If an IMSIC contains a supervisor-level interrupt file and software at the attached hart enables
S-mode that was previously disabled (e.g. by changing bit S of CSR misa from zero to one),
all state of the supervisor-level interrupt file is valid and consistent but otherwise unspecified.
Likewise, if an IMSIC contains guest interrupt files and software at the attached hart enables the
hypervisor extension that was previously disabled (e.g. by changing bit H of misa from zero to one),
all state of the IMSIC’s guest interrupt files is valid and consistent but otherwise unspecified.

3.5 Memory region for an interrupt file

Each interrupt file in an IMSIC has one or two memory-mapped 32-bit registers for receiving MSI
writes. These memory-mapped registers are located within a naturally aligned 4-KiB region (a
page) of physical address space that exists for the interrupt file, i.e., one page per interrupt file.

The layout of an interrupt-file’s memory region is:

offset size register name

0x000 4 bytes seteipnum le

0x004 4 bytes seteipnum be

All other bytes in an interrupt file’s 4-KiB memory region are reserved and must be implemented
as read-only zeros.

Only naturally aligned 32-bit simple reads and writes are supported within an interrupt file’s
memory region. Writes to read-only bytes are ignored. For other forms of accesses (other sizes,
misaligned accesses, or AMOs), an IMSIC implementation should preferably report an access fault
or bus error but must otherwise ignore the access.

If i is an implemented interrupt identity number, writing value i in little-endian byte order to
seteipnum le (Set External Interrupt-Pending bit by Number, Little-Endian) causes the pending
bit for interrupt i to be set to one. A write to seteipnum le is ignored if the value written is not
an implemented interrupt identity number in little-endian byte order.

For systems that support big-endian byte order, if i is an implemented interrupt identity number,
writing value i in big-endian byte order to seteipnum be (Set External Interrupt-Pending bit
by Number, Big-Endian) causes the pending bit for interrupt i to be set to one. A write to
seteipnum be is ignored if the value written is not an implemented interrupt identity number in
big-endian byte order. Systems that support only little-endian byte order may choose to ignore all
writes to seteipnum be.
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In most systems, seteipnum le is the write port for MSIs directed to this interrupt file. For systems
built mainly for big-endian byte order, seteipnum be may serve as the write port for MSIs directed
to this interrupt file from some devices.

A read of seteipnum le or seteipnum be returns zero in all cases.

When not ignored, writes to an interrupt file’s memory region are guaranteed to be reflected in the
interrupt file eventually, but not necessarily immediately. For a single interrupt file, the effects of
multiple writes (stores) to its memory region, though arbitrarily delayed, always occur in the same
order as the global memory order of the stores as defined by the RISC-V Unprivileged ISA.

In most circumstances, any delay between the completion of a write to an interrupt file’s memory
region and the effect of the write on the interrupt file is indistinguishable from other delays in
the memory system. However, if a hart writes to a seteipnum le or seteipnum be register of
its own IMSIC, then a delay between the completion of the store instruction and the consequent
setting of an interrupt-pending bit in the interrupt file may be visible to the hart.

3.6 Arrangement of the memory regions of multiple interrupt files

Each interrupt file that an IMSIC implements has its own memory region as described in the
previous section, occupying exactly one 4-KiB page of machine address space. When practical, the
memory pages of the machine-level interrupt files of all IMSICs should be located together in one
part of the address space, and the memory pages of all supervisor-level and guest interrupt files
should similarly be located together in another part of the address space, according to the rules
below.

The main reason for separating the machine-level interrupt files from the other interrupt files
in the address space is so harts that implement physical memory protection (PMP) can grant
supervisor-level access to all supervisor-level and guest interrupt files using only a single PMP
table entry. If the memory pages for machine-level interrupt files are instead interleaved with
those of lower-privilege interrupt files, the number of PMP table entries needed for granting
supervisor-level access to all non-machine-level interrupt files could equal the number of harts
in the system.

If a machine’s construction dictates that harts be subdivided into groups, with each group relegated
to its own portion of the address space, then the best that can be achieved is to locate together
the machine-level interrupt files of each group of harts separately, and likewise locate together the
supervisor-level and guest interrupt files of each group of harts separately. This situation is further
addressed later below.

A system may divide harts into groups in the address space because each group exists on a
separate chip (or chiplet in a multi-chip module), and weaving together the address spaces of the
multiple chips is impractical. In that case, granting supervisor-level access to all non-machine-
level interrupt files takes one PMP table entry per group.

For the purpose of locating the memory pages of interrupt files in the address space, assume each
hart (or each hart within a group) has a unique hart number that may or may not be related to the
unique hart identifiers (“hart IDs”) that the RISC-V Privileged Architecture assigns to harts. For
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convenient addressing, the memory pages of all machine-level interrupt files (or all those of a single
group of harts) should be arranged so that the address of the machine-level interrupt file for hart
number h is given by the formula A+ h× 2C for some integer constants A and C. If the largest
hart number is hmax, let k = ⌈log2(hmax + 1)⌉, the number of bits needed to represent any hart
number. Then the base address A should be aligned to a 2k+C address boundary, so A+ h× 2C

always equals A | (h× 2C), where the vertical bar (|) represents bitwise logical OR.

The smallest that C can be is 12, with 2C being the size of one 4-KiB page. If C > 12, the start of
the memory page for each machine-level interrupt file is aligned not just to a 4-KiB page but to a
stricter 2C address boundary. Within the 2k+C-size address range A through A+ 2k+C − 1, every
4-KiB page that is not occupied by a machine-level interrupt file should be filled with 32-bit words
of read-only zeros, such that any read of an aligned word returns zero and any write to an aligned
word is ignored.

The memory pages of all supervisor-level interrupt files (or all those of a single group of harts) should
similarly be arranged so that the address of the supervisor-level interrupt file for hart number h is
B + h× 2D for some integer constants B and D, with the base address B being aligned to a 2k+D

address boundary.

If an IMSIC implements guest interrupt files, the memory pages for the IMSIC’s supervisor-level
interrupt file and for its guest interrupt files should be contiguous, starting with the supervisor-
level interrupt file at the lowest address and followed by the guest interrupt files, ordered by guest
interrupt number. Schematically, the memory pages should be ordered contiguously as

S, G1, G2, G3, . . .

where S is the page for the supervisor-level interrupt file and each Gi is the page for the in-
terrupt file of guest interrupt number i. Consequently, the smallest that constant D can be is
⌈log2(maximum GEILEN + 1)⌉+12, recalling that GEILEN for each IMSIC is the number of guest
interrupt files the IMSIC implements.

Within the 2k+D-size address range B through B + 2k+D − 1, every 4-KiB page that is not occupied
by an interrupt file (supervisor-level or guest) should be filled with 32-bit words of read-only zeros.

When a system divides harts into groups, each in its own separate portion of the address space,
the memory page addresses of interrupt files should follow the formulas g × 2E + A + h× 2C for
machine-level interrupt files, and g × 2E + B + h× 2D for supervisor-level interrupt files, with g
being a group number, h being a hart number relative to the group, and E being another integer
constant ≥ k +max(C,D) but usually much larger. If the largest group number is gmax, let
j = ⌈log2(gmax + 1)⌉, the number of bits needed to represent any group number. Besides being
multiples of 2k+C and 2k+D respectively, A and B should be chosen so(

(2j − 1)× 2E
)
& A = 0 and

(
(2j − 1)× 2E

)
& B = 0

where an ampersand (&) represents bitwise logical AND. This ensures that

g × 2E +A+ h× 2C always equals (g × 2E) | A | (h× 2C), and
g × 2E +B + h× 2D always equals (g × 2E) | B | (h× 2D).
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Infilling with read-only-zero pages is expected only within each group, not between separate groups.
Specifically, if g is any integer between 0 and 2j − 1 inclusive, then within the address ranges,

g × 2E +A through g × 2E +A+ 2k+C − 1, and
g × 2E +B through g × 2E +B + 2k+D − 1,

pages not occupied by an interrupt file should be read-only zeros.

See also Section 4.9.1 for the default algorithms an Advanced PLIC may use to determine the
destination addresses of outgoing MSIs, which should be the addresses of IMSIC interrupt files.

3.7 CSRs for external interrupts via an IMSIC

Software accesses a hart’s IMSIC primarily through the CSRs introduced in Chapter 2. There
is a separate set of CSRs for each implemented privilege level that can receive interrupts. The
machine-level CSRs interact with the IMSIC’s machine-level interrupt file, while, if supervisor mode
is implemented, the supervisor-level CSRs interact with the IMSIC’s supervisor-level interrupt file.
When an IMSIC has guest interrupt files, the VS CSRs interact with a single guest interrupt file,
selected by the VGEIN field of CSR hstatus.

For machine level, the relevant CSRs are miselect, mireg, and mtopei. When supervisor mode is
implemented, the set of supervisor-level CSRs matches those of machine level: siselect, sireg,
and stopei. And when the hypervisor extension is implemented, there are three corresponding VS
CSRs: vsiselect, vsireg, and vstopei.

As explained in Chapter 2, registers miselect and mireg provide indirect access to additional
machine-level registers. Likewise for supervisor-level siselect and sireg, and VS-level vsiselect
and vsireg. In each case, a value of the *iselect CSR (miselect, siselect, or vsiselect) in the
range 0x70–0xFF selects a register of the corresponding IMSIC interrupt file, either the machine-
level interrupt file (miselect), the supervisor-level interrupt file (siselect), or a guest interrupt
file (vsiselect).

Interrupt files at each level act identically. For a given privilege level, values of the *iselect CSR
in the range 0x70–0xFF select these registers of the corresponding interrupt file:

0x70 eidelivery

0x72 eithreshold

0x80 eip0

0x81 eip1

. . . . . .
0xBF eip63

0xC0 eie0

0xC1 eie1

. . . . . .
0xFF eie63
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Register numbers 0x71 and 0x73–0x7F are reserved. When a *iselect CSR has one of these
values, reads from the matching *ireg CSR (mireg, sireg, or vsireg) return zero, and writes to
the *ireg CSR are ignored. (For vsiselect and vsireg, all accesses depend on hstatus.VGEIN
being the valid number of a guest interrupt file.)

Registers eip0 through eip63 contain the pending bits for all implemented interrupt identities,
and are collectively called the eip array. Registers eie0 through eie63 contain the enable bits for
the same interrupt identities, and are collectively called the eie array.

The indirectly accessed interrupt-file registers and CSRs mtopei, stopei, and vstopei are all
documented in more detail in the next two sections.

3.8 Indirectly accessed interrupt-file registers

This section describes the registers of an interrupt file that are accessed indirectly through a
*iselect CSR (miselect, siselect, or vsiselect) and its partner *ireg CSR (mireg, sireg, or
vsireg). The width of these indirect accesses is always the current XLEN, 32 bits for RV32 code,
or 64 bits for RV64 code.

3.8.1 External interrupt delivery enable register (eidelivery)

eidelivery is a WARL register that controls whether interrupts from this interrupt file are
delivered from the IMSIC to the attached hart so they appear as a pending external interrupt in
the hart’s mip or hgeip CSR. Register eidelivery may optionally also support the direct delivery
of interrupts from a PLIC (Platform-Level Interrupt Controller) or APLIC (Advanced PLIC) to
the attached hart. Three possible values are currently defined for eidelivery:

0 = Interrupt delivery is disabled
1 = Interrupt delivery from the interrupt file is enabled

0x40000000 = Interrupt delivery from a PLIC or APLIC is enabled (optional)

If eidelivery supports value 0x40000000, then a specific PLIC or APLIC in the system may act
as an alternate external interrupt controller for the attached hart at the same privilege level as this
interrupt file. When eidelivery is 0x40000000, the interrupt file functions the same as though
eidelivery is 0, and the PLIC or APLIC replaces the interrupt file in supplying pending external
interrupts at this privilege level at the hart.

Guest interrupt files do not support value 0x40000000 for eidelivery.

Reset initializes eidelivery to 0x40000000 if that value is supported; otherwise, eidelivery has
an unspecified valid value (0 or 1) after reset.

eidelivery value 0x40000000 supports system software that is oblivious to IMSICs and assumes
instead that the external interrupt controller is a PLIC or APLIC. Such software may exist either
because it predates the existence of IMSICs or because bypassing IMSICs is believed to reduce
programming effort.
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3.8.2 External interrupt enable threshold register (eithreshold)

eithreshold is a WLRL register that determines the minimum interrupt priority (maximum
interrupt identity number) allowing an interrupt to be signaled from this interrupt file to the
attached hart. If N is the maximum implemented interrupt identity number for this interrupt file,
eithreshold must be capable of holding all values between 0 and N , inclusive.

When eithreshold is a nonzero value P , interrupt identities P and higher do not contribute
to signaling interrupts, as though those identities were not enabled, regardless of the settings of
their corresponding interrupt-enable bits in the eie array. When eithreshold is zero, all enabled
interrupt identities contribute to signaling interrupts from the interrupt file.

3.8.3 External interrupt-pending registers (eip0–eip63)

When the current XLEN = 32, register eipk contains the pending bits for interrupts with identity
numbers k × 32 through k × 32 + 31. For an implemented interrupt identity i within that range,
the pending bit for interrupt i is bit (i mod 32) of eipk.

When the current XLEN = 64, the odd-numbered registers eip1, eip3, . . . eip63 do not exist.
In that case, if the *iselect CSR is an odd value in the range 0x81–0xBF, an attempt to access
the matching *ireg CSR raises an illegal instruction exception, unless done in VS-mode, in which
case it raises a virtual instruction exception. For even k, register eipk contains the pending bits
for interrupts with identity numbers k × 32 through k × 32 + 63. For an implemented interrupt
identity i within that range, the pending bit for interrupt i is bit (i mod 64) of eipk.

Bit positions in a valid eipk register that don’t correspond to a supported interrupt identity (such
as bit 0 of eip0) are read-only zeros.

3.8.4 External interrupt-enable registers (eie0–eie63)

When the current XLEN = 32, register eiek contains the enable bits for interrupts with identity
numbers k × 32 through k × 32 + 31. For an implemented interrupt identity i within that range,
the enable bit for interrupt i is bit (i mod 32) of eiek.

When the current XLEN = 64, the odd-numbered registers eie1, eie3, . . . eie63 do not exist.
In that case, if the *iselect CSR is an odd value in the range 0xC1–0xFF, an attempt to access
the matching *ireg CSR raises an illegal instruction exception, unless done in VS-mode, in which
case it raises a virtual instruction exception. For even k, register eiek contains the enable bits
for interrupts with identity numbers k × 32 through k × 32 + 63. For an implemented interrupt
identity i within that range, the enable bit for interrupt i is bit (i mod 64) of eiek.

Bit positions in a valid eiek register that don’t correspond to a supported interrupt identity (such
as bit 0 of eie0) are read-only zeros.
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3.9 Top external interrupt CSRs (mtopei, stopei, vstopei)

CSR mtopei interacts directly with an IMSIC’s machine-level interrupt file. If supervisor mode
is implemented, CSR stopei interacts directly with the supervisor-level interrupt file. And if the
hypervisor extension is implemented and field VGEIN of hstatus is the number of an implemented
guest interrupt file, vstopei interacts with the chosen guest interrupt file.

The value of a *topei CSR (mtopei, stopei, or vstopei) indicates the interrupt file’s current
highest-priority pending-and-enabled interrupt that also exceeds the priority threshold specified by
its eithreshold register if eithreshold is not zero. Interrupts with lower identity numbers have
higher priorities.

A read of a *topei CSR returns zero either if no interrupt is both pending in the interrupt file’s
eip array and enabled in its eie array, or if eithreshold is not zero and no pending-and-enabled
interrupt has an identity number less than the value of eithreshold. Otherwise, the value returned
from a read of *topei has this format:

bits 26:16 Interrupt identity
bits 10:0 Interrupt priority (same as identity)

All other bit positions are zeros.

The interrupt identity reported in a *topei CSR is the minor identity for an external interrupt at
the hart.

The redundancy in the value read from a *topei CSR is consistent with the Advanced PLIC,
which returns both an interrupt identity number and its priority in the same format as above,
but with the two components being independent of one another.

A write to a *topei CSR claims the reported interrupt identity by clearing its pending bit in
the interrupt file. The value written is ignored; rather, the current readable value of the register
determines which interrupt-pending bit is cleared. Specifically, when a *topei CSR is written, if
the register value has interrupt identity i in bits 26:16, then the interrupt file’s pending bit for
interrupt i is cleared. When a *topei CSR’s value is zero, a write to the register has no effect.

If a read and write of a *topei CSR are done together by a single CSR instruction (CSRRW,
CSRRS, or CSRRC), the value returned by the read indicates the pending bit that is cleared.

It is almost always a mistake to write to a *topei CSR without a simultaneous read to learn
which interrupt was claimed. Note especially, if a read of a *topei register and a subsequent
write to the register are done by two separate CSR instructions, then a higher-priority interrupt
may become newly pending-and-enabled in the interrupt file between the two instructions, causing
the write to clear the pending bit of the new interrupt and not the one reported by the read. Once
the pending bit of the new interrupt is cleared, the interrupt is lost.

If it is necessary first to read a *topei CSR and then subsequently claim the interrupt as
a separate step, the claim can be safely done by clearing the pending bit in the eip array via
*siselect and *sireg, instead of writing to *topei.
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3.10 Interrupt delivery and handling

An IMSIC’s interrupt files supply external interrupt signals to the attached hart, one interrupt
signal per interrupt file. The interrupt signal from a machine-level interrupt file appears as bit
MEIP in CSR mip, and the interrupt signal from a supervisor-level interrupt file appears as bit
SEIP in mip and sip. Interrupt signals from any guest interrupt files appear as the active bits in
hypervisor CSR hgeip.

When interrupt delivery is disabled by an interrupt file’s eidelivery register (eidelivery = 0),
the interrupt signal from the interrupt file is held de-asserted (false). When interrupt delivery from
an interrupt file is enabled (eidelivery = 1), its interrupt signal is asserted if and only if the
interrupt file has a pending-and-enabled interrupt that also exceeds the priority threshold specified
by eithreshold, if not zero.

A trap handler solely for external interrupts via an IMSIC could be written roughly as follows:

save processor registers
i = read CSR mtopei or stopei, and write simultaneously to claim the interrupt
i = i>>16

call the interrupt handler for external interrupt i (minor identity)
restore processor registers
return from trap

The combined read and write of mtopei or stopei in the second step can be done by a single
CSRRW machine instruction,

csrrw rd, mtopei/stopei, x0

where rd is the destination register for value i.
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Chapter 4

Advanced Platform-Level Interrupt
Controller (APLIC)

In a RISC-V system, a Platform-Level Interrupt Controller (PLIC) handles external interrupts
that are signaled through wires rather than by MSIs. When the RISC-V harts in a system do not
have IMSICs, the harts themselves do not support MSIs, and all external interrupts to such harts
must pass through a PLIC. But even in machines where harts have IMSICs and most interrupts
are communicated via MSIs, it is not unusual for some device interrupts still to be signaled by
dedicated wires. In particular, for devices (or device controllers) that do not otherwise need to
initiate bus transactions in the system, the cost of supporting MSIs is especially high, so wired
interrupts are a frugal alternative. Wired interrupts also continue to be universally supported by
all current computer platforms, unlike MSIs, making another reason for many commodity devices or
controllers to choose wired interrupts over MSIs, unless implementing a standard like PCI Express
that dictates MSIs.

This chapter specifies an Advanced PLIC (APLIC) that is not backward compatible with the earlier
RISC-V PLIC. Full conformance to the Advanced Interrupt Architecture requires the APLIC.
However, a workable system can be built substituting the older PLIC instead, assuming only wired
interrupts to harts, not MSIs.

We intend eventually to provide a free example parameterized implementation of an APLIC,
written in portable SystemVerilog, that we expect will be suitable for many RISC-V systems
without modification.

A draft specification exists for a Duo-PLIC that is software-configurable to act as either an
original RISC-V PLIC or an APLIC. However, at this time, it appears unlikely that the RISC-V
International Association will ever ratify the Duo-PLIC specification as a standard.

In a machine without IMSICs, every RISC-V hart accepts interrupts from exactly one PLIC or
APLIC that is the external interrupt controller for that hart. A hart’s external interrupt controller
(the PLIC or APLIC) signals interrupts to the hart through a dedicated connection, usually a
wire, for each privilege level that the hart may receive interrupts. (Recall Figure 1.1 on page 4.)

29
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A system without IMSICs will typically have only one PLIC or APLIC, serving as the external
interrupt controller for all RISC-V harts.

Because every RISC-V hart without an IMSIC has exactly one PLIC or APLIC as its exter-
nal interrupt controller, a system with multiple APLICs must partition the harts into disjoint
subsets, making each APLIC the external interrupt controller for a separate subset of the harts.
While not prohibited, this arrangement is likely to be less efficient than having all harts share a
single APLIC.

RISC-V harts that employ IMSICs as their external interrupt controllers can receive external inter-
rupts only in the form of MSIs. In that case, the role of an APLIC is to convert wired interrupts into
MSIs for harts. (Recall Figure 1.2 on page 4.) The APLIC is said to forward incoming wire-signaled
interrupts to harts by sending MSIs to the harts.

When harts have IMSICs to support MSIs, a system may easily contain multiple APLICs for
converting wired interrupts into MSIs, with each APLIC forwarding interrupts from a different
subset of devices. Multiple APLICs are presumably more likely to arise when groups of devices
are physically distant from one another, perhaps even on separate chips (including chiplets in a
multi-chip module).

4.1 Interrupt sources and identities

An individual APLIC supports a fixed number of interrupt sources, corresponding exactly with the
set of physical incoming interrupt wires at the APLIC. Most often, each source’s incoming wire is
connected to the output interrupt wire from a single device or device controller. (For level-sensitive
interrupts, the interrupt outputs of multiple devices or controllers may be combined to drive the
incoming wire of a single interrupt source at an APLIC. An interrupt source’s incoming wire might
also be simply tied high or low, if, for example, the source will always be configured as Detached.
See Section 4.5.2 for a description of source modes.)

Each of an APLIC’s interrupt sources has a fixed unique identity number in the range 1 to N ,
where N is the total number of sources at the APLIC. The number zero is not a valid interrupt
identity number at an APLIC. The maximum number of interrupt sources an APLIC may support
is 1023.

When an APLIC delivers interrupts directly to harts at a given privilege level (rather than for-
warding interrupts as MSIs), the APLIC is the external interrupt controller for the harts at that
privilege level, and the interrupt identities at the APLIC become directly the minor identities for
external interrupts at the harts.

On the other hand, when an APLIC forwards interrupts by MSIs, software configures a new inter-
rupt identity number for the outgoing MSIs of each source. Consequently, in this case, the source
identity numbers at a given APLIC only distinguish the incoming interrupts at the APLIC and
have no relevance outside the APLIC.
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4.2 Interrupt domains

An APLIC supports one or more interrupt domains, each associated with a subset of RISC-V harts
at one privilege level (machine or supervisor level). The harts within an interrupt domain are
those that the domain can interrupt at the corresponding privilege level. Each domain has its own
memory-mapped control region in the machine’s address space that appears to control a complete,
separate APLIC, though in fact all domain interfaces together access a single combined interrupt
controller.

Figures 4.1 through 4.3 depict some possible hierarchies of interrupt domains implemented by an
APLIC in a RISC-V system.

The first figure represents a minimal system that has a single hart not supporting supervisor
mode, with a single interrupt domain for machine level on that hart. The next figure, 4.2, shows a
basic arrangement for a larger system designed for symmetric multiprocessing (SMP), with multiple
harts that all implement supervisor mode. In such cases, the APLIC will usually provide a separate
interrupt domain for supervisor level, as the figure portrays. This supervisor-level interrupt domain
allows an operating system, running in S-mode on the multiple harts, to have direct control over
the interrupts it receives, avoiding the need to call upon M-mode to exercise that control.

Figure 4.1: Example of a RISC-V system that has a single hart implementing only M-mode, with
a single machine-level interrupt domain for that hart.

An APLIC’s interrupt domains are arranged in a tree hierarchy, with the root domain always being
at machine level. Incoming interrupt wires arrive first at the root domain. Each domain may then
selectively delegate all or a subset of interrupt sources to its child domains in the hierarchy. Within a
given APLIC, interrupt source numbers are invariant across all domains, so source identity number i
always refers to the same source in every domain, corresponding to incoming wire number i. For
an interrupt domain below the root, interrupt sources not delegated down to that domain appear
to the domain as being not implemented.

Figure 4.3 shows a hierarchy of three interrupt domains, two at machine level and one at supervisor
level. The arrangement in the figure, when combined with PMP (physical memory protection),
allows machine-level software to isolate a selection of interrupts exclusively for hart 0, beyond the
reach of the four application harts, even at machine level.
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Figure 4.2: An example system with four harts that implement M-mode and S-mode, with two
APLIC interrupt domains, one each for machine and supervisor levels.

Figure 4.3: A RISC-V system that extends the example of Figure 4.2 with a fifth M-mode-only
“manager” hart, with a separate machine-level interrupt domain above the other domains.
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In order for the harts within an interrupt domain to have direct control over the interrupts
from the domain, the harts must be cooperatively controlled by software at the same privilege
level. In particular, a single operating system should control all of the harts associated with
a supervisor-level interrupt domain. In the examples of Figures 4.2 and 4.3, control of the
APLIC’s supervisor-level interrupt domain could not be safely split among multiple independent
OSes.

Given the domain hierarchies depicted in the figures, if it were necessary to partition the ap-
plication harts for multiple OSes, machine-level software would need to prevent direct OS access
to the supervisor-level interrupt domain and instead provide SBI services for controlling APLIC
interrupts or, alternatively, emulate the control interfaces of separate supervisor-level interrupt
domains, one for each OS. Note that such emulation might still make use of the APLIC’s physical
supervisor-level interrupt domain, but under the control of machine-level software.

An APLIC’s interrupt domain hierarchy satisfies these rules:

• The root domain is at machine level.

• The parent of any supervisor-level interrupt domain is a machine-level domain that includes
at least the same harts (but at machine level, obviously). The parent domain may have a
larger set of harts at machine level.

• For each interrupt domain, interrupts from the domain are signaled to harts all by the same
method, either by wire or by MSIs, not by a mixture of methods among the harts.

When a RISC-V hart’s external interrupt controller is an APLIC, not an IMSIC, the hart can be
within only one interrupt domain of this APLIC at each privilege level.

On the other hand, a hart that has an IMSIC for its external interrupt controller may, at each
privilege level, be in multiple APLIC interrupt domains, even those of the same APLIC, and may
potentially receive MSIs from multiple different APLICs in the machine.

A platform might give software a way to choose between multiple interrupt domain hierarchies for
any given APLIC. Any such configurability is outside the scope of this specification, but should be
available to machine level only.

4.3 Hart index numbers

Within a given interrupt domain, each of the domain’s harts has a unique index number in the
range 0 to 214 − 1 (= 16,383). The index number a domain associates with a hart may or may
not have any relationship to the unique hart identifier (“hart ID”) that the RISC-V Privileged
Architecture assigns to the hart. Two different interrupt domains may employ entirely different
index numbers for the same set of harts. However, if any of an APLIC’s interrupt domains can
forward interrupts by MSI, then all machine-level domains of the APLIC share a common mapping
of index numbers to harts.

For efficiency, implementations should prefer small integers for hart index numbers.
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4.4 Overview of interrupt control for a single domain

Each interrupt domain implemented by an APLIC has its own separate physical control interface
that is memory-mapped in the machine’s address space, allowing access to each domain to be easily
regulated by both PMP (physical memory protection) and page-based address translation. The
control interfaces of all interrupt domains have a common structure. In most respects, every domain
appears to software as though it were a root domain, without visibility of the domains above it in
the hierarchy.

An individual interrupt domain has the following components for each interrupt source at the
APLIC:

• Source configuration. This determines whether the specific source is active in the domain
and, if so, how the incoming wire is to be interpreted, such as level-sensitive or edge-sensitive.
For a source that is inactive in the domain, source configuration controls any delegation to a
child domain.

• Interrupt-pending and interrupt-enable bits. For an inactive source, these two bits are read-
only zeros. Otherwise, the pending bit records an interrupt that arrived and has not yet been
signaled or forwarded, while the enable bit determines whether interrupts from this source
should currently be delivered, or should remain pending.

• Target selection. For an active source, target selection determines the hart to receive the
interrupt and either the interrupt’s priority or the new interrupt identity when forwarding as
an MSI.

For interrupt domains that deliver interrupts directly to harts rather than forwarding by MSIs, the
domain has a final set of components for controlling interrupt delivery to harts, one instance per
hart in the domain.

Although an APLIC with multiple interrupt domains may appear to duplicate the per-source
state listed above (source configuration, etc.) by a factor equal to the number of domains, in
fact, APLIC implementations can exploit the fact that each source is ultimately active in only
one domain. In all domains to which a specific interrupt source has not been delegated, the state
associated with the source appears as read-only zeros, requiring no physical register bits.

4.5 Memory-mapped control region for an interrupt domain

For each interrupt domain that an APLIC supports, there is a dedicated memory-mapped control
region for managing interrupts in that domain. This control region is a multiple of 4 KiB in size
and aligned to a 4-KiB address boundary. The smallest valid control region is 16 KiB. An interrupt
domain’s control region is populated by a set of 32-bit registers. The first 16 KiB contains the
registers listed in Table 4.1.

Starting at offset 0x4000, an interrupt domain’s control region may optionally have an array of
interrupt delivery control (IDC) structures, one for each potential hart index number in the range
0 to some maximum that is at least as large as the maximum hart index number for the interrupt
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offset size register name

0x0000 4 bytes domaincfg

0x0004 4 bytes sourcecfg[1]
0x0008 4 bytes sourcecfg[2]
. . . . . .

0x0FFC 4 bytes sourcecfg[1023]
0x1BC0 4 bytes mmsiaddrcfg (machine-level interrupt domains only)
0x1BC4 4 bytes mmsiaddrcfgh ”
0x1BC8 4 bytes smsiaddrcfg ”
0x1BCC 4 bytes smsiaddrcfgh ”
0x1C00 4 bytes setip[0]
0x1C04 4 bytes setip[1]
. . . . . .

0x1C7C 4 bytes setip[31]
0x1CDC 4 bytes setipnum

0x1D00 4 bytes in clrip[0]
0x1D04 4 bytes in clrip[1]
. . . . . .

0x1D7C 4 bytes in clrip[31]
0x1DDC 4 bytes clripnum

0x1E00 4 bytes setie[0]
0x1E04 4 bytes setie[1]
. . . . . .

0x1E7C 4 bytes setie[31]
0x1EDC 4 bytes setienum

0x1F00 4 bytes clrie[0]
0x1F04 4 bytes clrie[1]
. . . . . .

0x1F7C 4 bytes clrie[31]
0x1FDC 4 bytes clrienum

0x2000 4 bytes setipnum le

0x2004 4 bytes setipnum be

0x3000 4 bytes genmsi

0x3004 4 bytes target[1]
0x3008 4 bytes target[2]
. . . . . .

0x3FFC 4 bytes target[1023]

Table 4.1: The registers of the first 16 KiB of an interrupt domain’s memory-mapped control region.
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domain. IDC structures are used only when the domain is configured to deliver interrupts directly
to harts instead of being forwarded by MSIs. An interrupt domain that supports only interrupt
forwarding by MSIs and not the direct delivery of interrupts by the APLIC does not need IDC
structures in its control region.

The first IDC structure, if any, is for the hart with index number 0; the second is for the hart with
index number 1; and so forth. Each IDC structure is 32 bytes and has these defined registers:

offset size register name

0x00 4 bytes idelivery

0x04 4 bytes iforce

0x08 4 bytes ithreshold

0x18 4 bytes topi

0x1C 4 bytes claimi

IDC structures are packed contiguously, 32 bytes per structure, so the offset from the beginning
of an interrupt domain’s control region to its second IDC structure (hart index 1), if it exists, is
0x4020; the offset to the third IDC structure (hart index 2), if it exists, is 0x4040; etc.

The array of IDC structures may include some for potential hart index numbers that are not actual
hart index numbers in the domain. For example, the first IDC structure is always for hart index 0,
but 0 is not necessarily a valid index number for any hart in the domain. For each IDC structure in
the array that does not correspond to a valid hart index number in the domain, the IDC structure’s
registers may (or may not) be all read-only zeros.

Aside from the registers in Table 4.1 and those listed above for IDC structures, all other bytes in
an interrupt domain’s control region are reserved and are implemented as read-only zeros.

Only naturally aligned 32-bit simple reads and writes are supported within an interrupt domain’s
control region. Writes to read-only bytes are ignored. For other forms of accesses (other sizes,
misaligned accesses, or AMOs), implementations should preferably report an access fault or bus
error but must otherwise ignore the access.

The registers of the first 16 KiB of an interrupt domain’s control region (all but the IDC structures)
are documented individually below. IDC structures are documented later, in Section 4.8, “Interrupt
delivery directly by the APLIC.”

4.5.1 Domain configuration (domaincfg)

The domaincfg register has this format:

bits 31:24 read-only 0x80

bit 8 IE
bit 7 read-only 0
bit 2 DM (WARL)
bit 0 BE (WARL)

All other register bits are reserved and read as zeros.



Chapter 4. APLIC 37

Bit IE (Interrupt Enable) is a global enable for all active interrupt sources at this interrupt domain.
Only when IE = 1 are pending-and-enabled interrupts actually signaled or forwarded to harts.

Field DM (Delivery Mode) is WARL and determines how this interrupt domain delivers interrupts
to harts. The two possible values for DM are:

0 = direct delivery mode
1 = MSI delivery mode

In direct delivery mode, interrupts are prioritized and signaled directly to harts by the APLIC itself.
In MSI delivery mode, interrupts are forwarded by the APLIC as MSIs to harts, presumably for
further handling by IMSICs at those harts. A given APLIC implementation may support either or
both of these delivery modes for each interrupt domain.

If the interrupt domain’s harts have IMSICs, then unless the relevant interrupt files of those IMSICs
support value 0x40000000 for register eidelivery, setting DM to zero (direct delivery mode) will
have the same effect as setting IE to zero. See Sections 3.8.1 and 4.8.2.

BE (Big-Endian) is a WARL field that determines the byte order for most registers in the interrupt
domain’s memory-mapped control region. If BE = 0, byte order is little-endian, and if BE = 1,
it is big-endian. For RISC-V systems that support only little-endian, BE may be read-only zero,
and for those that support only big-endian, BE may be read-only one. For bi-endian systems, BE
is writable.

Field BE affects the byte order of accesses to the domaincfg register itself, just as for other registers
in the interrupt domain’s control region. To deal with this fact, the read-only value in domaincfg’s
most-significant byte, bits 31:24, serves two purposes. First, for any read of domaincfg, the regis-
ter’s correct byte order is easily determined from the four-byte value obtained: When interpreted
in the correct byte order, bit 31 is one, and in the wrong order, bit 31 is zero. Second, if the value of
BE is uncertain (prior to software initializing the interrupt domain, presumably), an 8-bit value x
can be safely written to domaincfg by writing (x << 24) | x, where << 24 represents shifting left by
24 bits, and the vertical bar (|) represents bitwise logical OR. After domaincfg is written once, the
value of BE should then be known, so subsequent writes should not need to repeat the same trick.

At system reset, all writable bits in domaincfg are initialized to zero, including IE. If an implemen-
tation supports additional forms of reset for the APLIC, it is implementation-defined (or possibly
platform-defined) how these other resets may affect domaincfg.

4.5.2 Source configurations (sourcecfg[1]–sourcecfg[1023])

For each possible interrupt source i, register sourcecfg[i] controls the source mode for source i
in this interrupt domain as well as any delegation of the source to a child domain. When source i
is not implemented, or appears in this domain not to be implemented, sourcecfg[i] is read-only
zero. If source i was not delegated to this domain and is then changed (at the parent domain)
to become delegated to this domain, sourcecfg[i] remains zero until successfully written with a
nonzero value.
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Bit 10 of sourcecfg[i] is a 1-bit field called D (Delegate). If D = 1, source i is delegated to a
child domain, and if D = 0, it is not delegated to a child domain. Interpretation of the rest of
sourcecfg[i] depends on field D.

When interrupt source i is delegated to a child domain, sourcecfg[i] has this format:

bit 10 D, = 1
bits 9:0 Child Index (WLRL)

All other register bits are reserved and read as zeros.

Child Index is a WLRL field that specifies the interrupt domain to which this source is delegated.
For an interrupt domain with C child domains, this field must be able to hold integer values in the
range 0 to C − 1. Each interrupt domain has a fixed mapping from these index numbers to child
domains.

If an interrupt domain has no children in the domain hierarchy, bit D cannot be set to one in any
sourcecfg register for that domain. For such a leaf domain, attempting to write a sourcecfg

register with a value that has bit 10 = 1 causes the entire register to be set to zero instead.

When interrupt source i is not delegated to a child domain, sourcecfg[i] has this format:

bit 10 D, = 0
bits 2:0 SM (WARL)

All other register bits are reserved and read as zeros.

The SM (Source Mode) field is WARL and controls whether the interrupt source is active in this
domain, and if so, what values or transitions on the incoming wire are interpreted as interrupts.
The values allowed for SM and their meanings are listed in Table 4.2. Inactive (zero) is always
supported for field SM. Implementations are free to choose, independently for each interrupt source,
what other values are supported for SM.

Value Name Description

0 Inactive Inactive in this domain (and not delegated)
1 Detached Active, detached from the source wire
2–3 — Reserved
4 Edge1 Active, edge-sensitive; interrupt asserted on rising edge
5 Edge0 Active, edge-sensitive; interrupt asserted on falling edge
6 Level1 Active, level-sensitive; interrupt asserted when high
7 Level0 Active, level-sensitive; interrupt asserted when low

Table 4.2: Encoding of the SM (Source Mode) field of a sourcecfg register when bit D = 0

An interrupt source is inactive in the interrupt domain if either the source is delegated to a child
domain (D = 1) or it is not delegated (D = 0) and SM is Inactive. Whenever interrupt source i
is inactive in an interrupt domain, the corresponding interrupt-pending and interrupt-enable bits
within the domain are read-only zeros, and register target[i] is also read-only zero. If source i
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is changed from inactive to an active mode, the interrupt source’s pending and enable bits remain
zeros, unless set automatically for a reason specified later in this section or in Section 4.7, and the
defined subfields of target[i] obtain unspecified values.

When a source is configured as Detached, its wire input is ignored; however, the interrupt-pending
bit may still be set by a write to a setip or setipnum register. (This mode can be useful for
receiving MSIs, for example.)

An edge-sensitive source can be configured to recognize an incoming interrupt on either a rising edge
(low-to-high transition) or a falling edge (high-to-low transition). When configured for a falling
edge (mode Edge0), the source is said to be inverted.

A level-sensitive source can be configured to interpret either a high level (1) or a low level (0) on
the wire as the assertion of an interrupt. When configured for a low level (mode Level0), the source
is said to be inverted.

For an interrupt source that is configured as edge-sensitive or level-sensitive, define

rectified input value = (incoming wire value) XOR (source is inverted).

For a source that is inactive or Detached, the rectified input value is zero.

Any write to a sourcecfg register might (or might not) cause the corresponding interrupt-pending
bit to be set to one if the rectified input value is high (= 1) under the new source mode. A write
to a sourcecfg register will not by itself cause a pending bit to be cleared except when the source
is made inactive. (But see Section 4.7.)

4.5.3 Machine MSI address configuration (mmsiaddrcfg and mmsiaddrcfgh)

For machine-level interrupt domains, registers mmsiaddrcfg and mmsiaddrcfgh may optionally
provide parameters used to determine the addresses to write outgoing MSIs.

If no interrupt domain of the APLIC supports MSI delivery mode (domaincfg.DM is read-only
zero for all domains), these two registers are not implemented for any domain. Otherwise, they
are implemented for the root domain, and may or may not be implemented for other machine-level
domains. For domains not at machine level, they are never implemented. When a domain does not
implement mmsiaddrcfg and mmsiaddrcfgh, the eight bytes at their locations are simply read-only
zeros like other reserved bytes.

Registers mmsiaddrcfg and mmsiaddrcfgh are potentially writable only for the root domain. For
all other machine-level domains that implement them, they are read-only.

When implemented, mmsiaddrcfg has this format:

bits 31:0 Low Base PPN (WARL)
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and mmsiaddrcfgh has this format:

bit 31 L
bits 28:24 HHXS (WARL)
bits 22:20 LHXS (WARL)
bits 18:16 HHXW (WARL)
bits 15:12 LHXW (WARL)
bits 11:0 High Base PPN (WARL)

All other bits of mmsiaddrcfgh are reserved and read as zeros.

Fields High Base PPN from mmsiaddrcfgh and Low Base PPN from mmsiaddrcfg concatenate to
form a 44-bit Base PPN (Physical Page Number). The use of this value and fields HHXS (High Hart
Index Shift), LHXS (Low Hart Index Shift), HHXW (High Hart Index Width), and LHXW (Low
Hart Index Width) for determining target addresses for MSIs is described later, in Section 4.9.1.

When mmsiaddrcfg and mmsiaddrcfgh are writable (root domain only), all fields other than L
are WARL. An implementation is free to choose what values are supported. Typically, some bits
are writable while others are read-only constants. In the extreme, the values of all fields may be
entirely constant, fixed by the implementation.

If bit L in mmsiaddrcfgh is set to one, mmsiaddrcfg and mmsiaddrcfgh are locked, and writes to
the registers are ignored, making the registers effectively read-only. When L = 1, the other fields
in mmsiaddrcfg and mmsiaddrcfgh may optionally all read as zeros. In that case, if these other
fields were given nonzero values when L was first set in the root domain, their values are retained
internally by the APLIC but become no longer visible by reading mmsiaddrcfg and mmsiaddrcfgh.

Setting mmsiaddrcfgh.L to one also locks registers smsiaddrcfg and smsiaddrcfgh described in
the next subsection, if those registers are implemented as well.

For the root domain, L is initialized at system reset to either zero or one, whichever is deemed
appropriate for the specific APLIC implementation. If reset initializes L to one, either the other
fields are hardwired by the APLIC to constants, or the APLIC has a different means, outside
of this standard, for determining the addresses of outgoing MSI writes. In the latter case, the
other fields in mmsiaddrcfg and mmsiaddrcfgh may all read as zeros, so registers mmsiaddrcfg

and mmsiaddrcfgh have only read-only values zero and 0x80000000 respectively. Any time
mmsiaddrcfg or mmsiaddrcfgh has a different value (not zero or 0x80000000 respectively), the
addresses for outgoing MSI writes directed to machine level must be derivable from the visible
values of these registers, as specified in Section 4.9.1.

For machine-level domains that are not the root domain, if these registers are implemented, bit L
is always one, and the other fields either are read-only copies of mmsiaddrcfg and mmsiaddrcfgh

from the root domain, or are all zeros.

Giving software the ability to arbitrarily determine the addresses to which MSIs are sent, even
if allowed only for machine level, permits bypassing physical memory protection (PMP). For
APLICs that support MSI delivery mode, it is recommended, if feasible, that the APLIC inter-
nally hardwire the physical addresses for all target IMSICs, putting those addresses beyond the
reach of software to change. However, not all APLIC implementations will be able to follow that
recommendation.
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It is expected that most systems will arrange the physical addresses of target IMSICs in a
simple linear correspondence with hart index numbers. (See Section 3.6.) Registers mmsiaddrcfg
and mmsiaddrcfgh (along with smsiaddrcfg and smsiaddrcfgh from the next subsection) allow
sufficiently trusted machine-level software, early after system reset, to configure the pattern of
physical addresses for target IMSICs and then lock this configuration against subsequent tam-
pering.

APLICs that actually hardwire the IMSIC addresses internally can implement these registers
simply as read-only with values zero and 0x80000000. Or, if the IMSIC addresses must be con-
figured by software but the formula is too complex for registers mmsiaddrcfg and mmsiaddrcfgh

to handle, again the registers can be implemented simply as read-only with values zero and
0x80000000, and a separate, custom mechanism supplied for configuring the IMSIC addresses.

If an APLIC supports additional forms of reset besides system reset, it is implementation-defined
(or possibly platform-defined) how these other resets may affect mmsiaddrcfg and mmsiaddrcfgh

(as well as smsiaddrcfg and smsiaddrcfgh) in the root domain. However, it must not be possible
for insufficiently privileged software to use a localized reset to unlock these registers by changing
bit L back to zero. For this reason, it is likely that only a complete system reset affects these
registers, and any other resets do not.

4.5.4 Supervisor MSI address configuration (smsiaddrcfg and smsiaddrcfgh)

For machine-level interrupt domains, registers smsiaddrcfg and smsiaddrcfgh may optionally
provide parameters used by supervisor-level domains to determine the addresses to write outgoing
MSIs.

Registers smsiaddrcfg and smsiaddrcfgh are implemented by a domain if the domain implements
mmsiaddrcfg and mmsiaddrcfgh and the APLIC has at least one supervisor-level interrupt domain.
If the registers are not implemented, the eight bytes at their locations are simply read-only zeros
like other reserved bytes.

Like mmsiaddrcfg and mmsiaddrcfgh, registers smsiaddrcfg and smsiaddrcfgh are potentially
writable only for the root domain. For all other machine-level domains that implement them, they
are read-only.

When implemented, smsiaddrcfg has this format:

bits 31:0 Low Base PPN (WARL)

and smsiaddrcfgh has this format:

bits 22:20 LHXS (WARL)
bits 11:0 High Base PPN (WARL)

All other bits of smsiaddrcfgh are reserved and read as zeros.

Fields High Base PPN from smsiaddrcfgh and Low Base PPN from smsiaddrcfg concatenate to
form a 44-bit Base PPN (Physical Page Number). The use of this value and field LHXS (Low Hart
Index Shift) for determining target addresses for MSIs is described later, in Section 4.9.1.
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When smsiaddrcfg and smsiaddrcfgh are writable (root domain only), all fields are WARL.
An implementation is free to choose what values are supported, just as for mmsiaddrcfg and
mmsiaddrcfgh.

If register mmsiaddrcfgh of the domain has bit L set to one, then smsiaddrcfg and smsiaddrcfgh

are locked as read-only alongside mmsiaddrcfg and mmsiaddrcfgh. When mmsiaddrcfgh.L = 1,
if the readable values of mmsiaddrcfg and mmsiaddrcfgh are zero and 0x80000000 respectively—
because their other fields are hidden—then smsiaddrcfg and smsiaddrcfgh are hidden also and
read as zeros.

For the root domain only, if mmsiaddrcfgh.L = 1 and the MSI-address-configuration fields are
hidden (so mmsiaddrcfgh reads as 0x80000000 and registers mmsiaddrcfg, smsiaddrcfg, and
smsiaddrcfgh all read as zeros), then whatever values smsiaddrcfg and smsiaddrcfgh had when
mmsiaddrcfgh.L was first set are retained internally by the APLIC, though those values are no
longer visible by reading the registers. Alternatively, if system reset initializes mmsiaddrcfgh.L
= 1 in the root domain, and if all MSI-address-configuration fields never appear as anything other
than zeros, then the APLIC implementation has some other, possibly nonstandard, means for
determining the addresses of outgoing MSIs, as discussed in the previous subsection, 4.5.3.

Any time mmsiaddrcfg and mmsiaddrcfgh are not read-only zero and 0x80000000 respectively, the
addresses for outgoing MSI writes directed to supervisor level must be derivable from the visible
values of registers mmsiaddrcfgh, smsiaddrcfg, and smsiaddrcfgh, as specified in Section 4.9.1.

For machine-level domains that are not the root domain, if smsiaddrcfg and smsiaddrcfgh are
implemented and are not read-only zeros, then they are read-only copies of the same registers from
the root domain.

4.5.5 Set interrupt-pending bits (setip[0]–setip[31])

Reading or writing register setip[k] reads or potentially modifies the pending bits for interrupt
sources k × 32 through k × 32 + 31. For an implemented interrupt source i within that range, the
pending bit for source i corresponds with register bit (i mod 32).

A read of a setip register returns the pending bits of the corresponding interrupt sources. Bit
positions in the result value that do not correspond to an implemented interrupt source (such as
bit 0 of setip[0]) are zeros.

On a write to a setip register, for each bit that is one in the 32-bit value written, if that bit
position corresponds to an active interrupt source, the interrupt-pending bit for that source is set
to one if possible. See Section 4.7 for exactly when a pending bit may be set by writing to a setip

register.

4.5.6 Set interrupt-pending bit by number (setipnum)

If i is an active interrupt source number in the domain, writing 32-bit value i to register setipnum
causes the pending bit for source i to be set to one if possible. See Section 4.7 for exactly when a
pending bit may be set by writing to setipnum.
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A write to setipnum is ignored if the value written is not an active interrupt source number in the
domain. A read of setipnum always returns zero.

4.5.7 Rectified inputs, clear interrupt-pending bits (in clrip[0]–in clrip[31])

Reading register in clrip[k] returns the rectified input values (Section 4.5.2) for interrupt sources
k × 32 through k × 32 + 31, while writing in clrip[k] potentially modifies the pending bits for
the same sources. For an implemented interrupt source i within the specified range, source i
corresponds with register bit (i mod 32).

A read of an in clrip register returns the rectified input values of the corresponding interrupt
sources. Bit positions in the result value that do not correspond to an implemented interrupt
source (such as bit 0 of in clrip[0]) are zeros.

On a write to an in clrip register, for each bit that is one in the 32-bit value written, if that
bit position corresponds to an active interrupt source, the interrupt-pending bit for that source is
cleared if possible. See Section 4.7 for exactly when a pending bit may be cleared by writing to an
in clrip register.

4.5.8 Clear interrupt-pending bit by number (clripnum)

If i is an active interrupt source number in the domain, writing 32-bit value i to register clripnum
causes the pending bit for source i to be cleared if possible. See Section 4.7 for exactly when a
pending bit may be cleared by writing to clripnum.

A write to clripnum is ignored if the value written is not an active interrupt source number in the
domain. A read of clripnum always returns zero.

4.5.9 Set interrupt-enable bits (setie[0]–setie[31])

Reading or writing register setie[k] reads or potentially modifies the enable bits for interrupt
sources k × 32 through k × 32 + 31. For an implemented interrupt source i within that range, the
enable bit for source i corresponds with register bit (i mod 32).

A read of a setie register returns the enable bits of the corresponding interrupt sources. Bit
positions in the result value that do not correspond to an implemented interrupt source (such as
bit 0 of setie[0]) are zeros.

On a write to a setie register, for each bit that is one in the 32-bit value written, if that bit
position corresponds to an active interrupt source, the interrupt-enable bit for that source is set to
one.
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4.5.10 Set interrupt-enable bit by number (setienum)

If i is an active interrupt source number in the domain, writing 32-bit value i to register setienum
causes the enable bit for source i to be set to one.

A write to setienum is ignored if the value written is not an active interrupt source number in the
domain. A read of setienum always returns zero.

4.5.11 Clear interrupt-enable bits (clrie[0]–clrie[31])

Writing register clrie[k] potentially modifies the enable bits for interrupt sources k× 32 through
k × 32 + 31. For an implemented interrupt source i within that range, the enable bit for source i
corresponds with register bit (i mod 32).

On a write to a clrie register, for each bit that is one in the 32-bit value written, the interrupt-
enable bit for that source is cleared.

A read of a clrie register always returns zero.

4.5.12 Clear interrupt-enable bit by number (clrienum)

If i is an active interrupt source number in the domain, writing 32-bit value i to register clrienum
causes the enable bit for source i to be cleared.

A write to clrienum is ignored if the value written is not an active interrupt source number in the
domain. A read of clrienum always returns zero.

4.5.13 Set interrupt-pending bit by number, little-endian (setipnum le)

Register setipnum le acts identically to setipnum except that byte order is always little-endian,
as though field BE (Big-Endian) of register domaincfg is zero.

For systems that are big-endian-only, with domaincfg.BE hardwired to one, setipnum le need not
be implemented, in which case the four bytes at this offset are simply read-only zeros like other
reserved bytes.

setipnum le may be used as a write port for MSIs.

4.5.14 Set interrupt-pending bit by number, big-endian (setipnum be)

Register setipnum be acts identically to setipnum except that byte order is always big-endian, as
though field BE (Big-Endian) of register domaincfg is one.
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For systems that are little-endian-only, with domaincfg.BE hardwired to zero, setipnum be need
not be implemented, in which case the four bytes at this offset are simply read-only zeros like other
reserved bytes.

For systems built mainly for big-endian byte order, setipnum be may be useful as a write port for
MSIs from some devices.

4.5.15 Generate MSI (genmsi)

When the interrupt domain is configured in MSI delivery mode (domaincfg.DM = 1), register
genmsi can be used to cause an extempore MSI to be sent from the APLIC to a hart. The main
purpose for this function is to assist in establishing a temporary known ordering between a hart’s
writes to the APLIC’s registers and the transmission of MSIs from the APLIC to the hart, as
explained later in Section 4.9.3.

For other purposes, sending an MSI to a hart is usually better done by writing directly to the
hart’s IMSIC, rather than employing an APLIC as an intermediary. Use of the genmsi register
should be minimized to avoid it becoming a bottleneck.

Register genmsi has this format:

bits 31:18 Hart Index (WLRL)
bit 12 Busy (read-only)
bits 10:0 EIID (WARL)

All other register bits are reserved and read as zeros.

The Busy bit is ordinarily zero (false), but a write to genmsi causes Busy to become one (true),
indicating an extempore MSI is pending. The Hart Index field specifies the destination hart, and
EIID (External Interrupt Identity) specifies the data value for the MSI. Fields Hart Index and EIID
have the same formats and behavior as in a target register, documented in the next subsection,
4.5.16. For a machine-level interrupt domain, an extempore MSI is sent to the destination hart
at machine level, and for a supervisor-level interrupt domain, an extempore MSI is sent to the
destination hart at supervisor level.

A pending extempore MSI should be sent by the APLIC with minimal delay. Once it has left the
APLIC and the APLIC is able to accept a new write to genmsi for another extempore MSI, Busy
reverts to false. All MSIs previously sent from this APLIC to the same hart must be visible at the
hart’s IMSIC before the extempore MSI becomes visible at the hart’s IMSIC.

While Busy is true, writes to genmsi are ignored.

Extempore MSIs are not affected by the IE bit of the domain’s domaincfg register. An extempore
MSI is sent even if domaincfg.IE = 0.

When the interrupt domain is configured in direct delivery mode (domaincfg.DM = 0), register
genmsi is read-only zero.
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4.5.16 Interrupt targets (target[1]-target[1023])

If interrupt source i is inactive in this domain, register target[i] is read-only zero. If source i is
active, target[i] determines the hart to which interrupts from the source are signaled or forwarded.
The exact interpretation of target[i] depends on the delivery mode configured by field DM of
register domaincfg.

If domaincfg.DM is changed, the target registers for all active interrupt sources within the domain
obtain unspecified values in all fields defined for the new delivery mode.

Active source, direct delivery mode

For an active interrupt source i, if the domain is configured in direct delivery mode (domaincfg.DM
= 0), then register target[i] has this format:

bits 31:18 Hart Index (WLRL)
bits 7:0 IPRIO (WARL)

All other register bits are reserved and read as zeros.

Hart Index is a WLRL field that specifies the hart to which interrupts from this source will be
delivered.

Field IPRIO (Interrupt Priority) specifies the priority number for the interrupt source. This field is
a WARL unsigned integer of IPRIOLEN bits, where IPRIOLEN is a constant parameter for the
given APLIC, in the range of 1 to 8. Only values 1 through 2IPRIOLEN − 1 are allowed for IPRIO,
not zero. A write to a target register sets IPRIO equal to bits (IPRIOLEN− 1):0 of the 32-bit
value written, unless those bits are all zeros, in which case the priority number is set to 1 instead.
(If IPRIOLEN = 1, these rules cause IPRIO to be effectively read-only with value 1.)

Smaller priority numbers convey higher priority. When interrupt sources have equal priority num-
ber, the source with the lowest identity number has the highest priority.

Interrupt priorities are encoded as integers, with smaller numbers denoting higher priority, to
match the encoding of priorities by IMSICs.

Active source, MSI delivery mode

For an active interrupt source i, if the domain is configured in MSI delivery mode (domaincfg.DM
= 1), then register target[i] has this format:

bits 31:18 Hart Index (WLRL)
bits 17:12 Guest Index (WLRL)
bits 10:0 EIID (WARL)

Bit 11 is reserved and reads as zero.
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The Hart Index field specifies the hart to which interrupts from this source will be forwarded.

If the interrupt domain is at supervisor level and the domain’s harts implement the RISC-V Priv-
ileged Architecture’s hypervisor extension, then Guest Index is a WLRL field that must be able
to hold all integer values in the range 0 through GEILEN. (Parameter GEILEN is defined by the
Privileged Architecture’s hypervisor extension.) Otherwise, field Guest Index is read-only zero. For
a supervisor-level interrupt domain, a nonzero Guest Index is the number of the target hart’s guest
interrupt file to which MSIs will be sent. When Guest Index is zero, MSIs from a supervisor-level
domain are forwarded to the target hart at supervisor level. For a machine-level domain, Guest
Index is read-only zero, and MSIs are forwarded to a target hart always at machine level.

Together, fields Hart Index and Guest Index of register target[i] determine the address for MSIs
forwarded for interrupt source i. The remaining field EIID (External Interrupt Identity) specifies
the data value for those MSIs, eventually becoming the minor identity for an external interrupt at
the target hart.

If the interrupt domain’s harts have IMSIC interrupt files that implement N distinct interrupt
identities (Section 3.1), then EIID is a k-bit unsigned integer field, where ⌈log2N⌉ ≤ k ≤ 11. EIID
is thus able to hold at least values 0 through N . A write to a target register sets the k implemented
bits of EIID equal to the least-significant k bits of the 32-bit value written.

4.6 Reset

Upon reset of an APLIC, all its state becomes valid and consistent but otherwise unspecified,
except for:

• the domaincfg register of each interrupt domain (Section 4.5.1);
• possibly the MSI address configuration registers of machine-level interrupt domains (Sections

4.5.3 and 4.5.4); and
• the Busy bit of each interrupt domain’s genmsi register, if it exists (Section 4.5.15).

4.7 Precise effects on interrupt-pending bits

An attempt to set or clear an interrupt source’s pending bit by writing to a register in the interrupt
domain’s control region may or may not be successful, depending on the corresponding source
mode, the interrupt domain’s delivery mode, and the state of the source’s rectified input value
(defined in Section 4.5.2). The following enumerates all the circumstances when a pending bit is
set or cleared for a given source mode.

If the source mode is Detached:

• The pending bit is set to one only by a relevant write to a setip or setipnum register.

• The pending bit is cleared when the interrupt is claimed at the APLIC or forwarded by MSI,
or by a relevant write to an in clrip register or to clripnum.



48 RISC-V Advanced Interrupt Architecture V1.0

If the source mode is Edge1 or Edge0:

• The pending bit is set to one by a low-to-high transition in the rectified input value, or by a
relevant write to a setip or setipnum register.

• The pending bit is cleared when the interrupt is claimed at the APLIC or forwarded by MSI,
or by a relevant write to an in clrip register or to clripnum.

If the source mode is Level1 or Level0 and the interrupt domain is configured in direct delivery
mode (domaincfg.DM = 0):

• The pending bit is set to one whenever the rectified input value is high. The pending bit
cannot be set by a write to a setip or setipnum register.

• The pending bit is cleared whenever the rectified input value is low. The pending bit is not
cleared by a claim of the interrupt at the APLIC, nor can it be cleared by a write to an
in clrip register or to clripnum.

If the source mode is Level1 or Level0 and the interrupt domain is configured in MSI delivery mode
(domaincfg.DM = 1):

• The pending bit is set to one by a low-to-high transition in the rectified input value. The
pending bit may also be set by a relevant write to a setip or setipnum register when the
rectified input value is high, but not when the rectified input value is low.

• The pending bit is cleared whenever the rectified input value is low, when the interrupt is
forwarded by MSI, or by a relevant write to an in clrip register or to clripnum.

When an interrupt domain is in direct delivery mode, the pending bit for a level-sensitive source
is always just a copy of the rectified input value. Even in MSI delivery mode, the pending bit for
a level-sensitive source is never set (= 1) when the rectified input value is low.

In addition to the rules above, a write to a sourcecfg register can cause the source’s interrupt-
pending bit to be set to one, as specified in Section 4.5.2.

4.8 Interrupt delivery directly by the APLIC

When an interrupt domain is in direct delivery mode (domaincfg.DM = 0), interrupts are delivered
from the APLIC to harts by a unique signal to each hart, usually a dedicated wire. In this case, the
domain’s memory-mapped control region contains at the end an array of interrupt delivery control
(IDC) structures, one IDC structure per potential hart index. The first IDC structure is for the
domain’s hart with index 0; the second is for the hart with index 1; etc.
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4.8.1 Interrupt delivery control (IDC) structure

Each IDC structure is 32 bytes (naturally aligned to a 32-byte address boundary) and has these
defined registers:

offset size register name

0x00 4 bytes idelivery

0x04 4 bytes iforce

0x08 4 bytes ithreshold

0x18 4 bytes topi

0x1C 4 bytes claimi

If the IDC structure is for a hart index number that is not valid for any actual hart in the interrupt
domain, then these registers may optionally be all read-only zeros. Otherwise, the registers are
documented individually below.

A particular APLIC might be built to support up to some maximum number of harts without
complete knowledge of the set of hart index numbers the system will employ in each interrupt
domain. In that case, for the hart index numbers that are unused, the APLIC may have IDC
structures that are functional within the APLIC (not read-only zeros) but simply left unconnected
to any physical harts.

4.8.1.1 Interrupt delivery enable (idelivery)

idelivery is a WARL register that controls whether interrupts that are targeted to the corre-
sponding hart are delivered to the hart so they appear as a pending interrupt in the hart’s mip

CSR. Only two values are currently defined for idelivery:

0 = interrupt delivery is disabled
1 = interrupt delivery is enabled

If an IDC structure is for a nonexistent hart (i.e., corresponding to a hart index number that is
not valid for any actual hart in the interrupt domain), setting idelivery to 1 does not deliver
interrupts to any hart.

4.8.1.2 Interrupt force (iforce)

iforce is a WARL register useful for testing. Only values 0 and 1 are allowed. Setting iforce

= 1 forces an interrupt to be asserted to the corresponding hart whenever both the IE field of
domaincfg is one and interrupt delivery is enabled to the hart by the idelivery register. When
topi is zero, this creates a spurious external interrupt for the hart.

When a read of register claimi returns an interrupt identity of zero (indicating a spurious inter-
rupt), iforce is automatically cleared to zero.
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4.8.1.3 Interrupt enable threshold (ithreshold)

ithreshold is a WLRL register that determines the minimum interrupt priority (maximum pri-
ority number) for an interrupt to be signaled to the corresponding hart. Register ithreshold

implements exactly IPRIOLEN bits, and thus is capable of holding all priority numbers from 0 to
2IPRIOLEN − 1.

When ithreshold is a nonzero value P , interrupt sources with priority numbers P and higher
do not contribute to signaling interrupts to the hart, as though those sources were not enabled,
regardless of the settings of their interrupt-enable bits. When ithreshold is zero, all enabled
interrupt sources can contribute to signaling interrupts to the hart.

4.8.1.4 Top interrupt (topi)

topi is a read-only register whose value indicates the current highest-priority pending-and-enabled
interrupt targeted to this hart that also exceeds the priority threshold specified by ithreshold, if
not zero.

A read of topi returns zero either if no interrupt that is targeted to this hart is both pending and
enabled, or if ithreshold is not zero and no pending-and-enabled interrupt targeted to this hart
has a priority number less than the value of ithreshold. Otherwise, the value returned from a
read of topi has this format:

bits 25:16 Interrupt identity (source number)
bits 7:0 Interrupt priority

All other bit positions are zeros.

The interrupt identity reported in topi is the minor identity for an external interrupt at the target
hart.

Writes to topi are ignored.

4.8.1.5 Claim top interrupt (claimi)

Register claimi has the same value as topi. When this value is not zero, reading claimi has the
simultaneous side effect of clearing the pending bit for the reported interrupt identity, if possible.
See Section 4.7 for exactly when the pending bit is cleared by a read of claimi.

A read from claimi that returns a value of zero has the simultaneous side effect of setting the
iforce register to zero.

Writes to claimi are ignored.
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4.8.2 Interrupt delivery and handling

When an interrupt domain is configured so the APLIC delivers interrupts directly to harts (field DM
of domaincfg is zero), the APLIC supplies the external interrupt signals, at the domain’s privilege
level, for all harts of the domain, so long as one of the following is true: (a) the harts do not have
IMSICs, or (b) the eidelivery registers of the relevant IMSIC interrupt files are set to 0x40000000
(Section 3.8.1). For a machine-level domain, the interrupt signals from the APLIC appear as bit
MEIP (Machine External Interrupt-Pending) in each hart’s mip CSR. For a supervisor-level domain,
the interrupt signals appear as bit SEIP (Supervisor External Interrupt-Pending) in each hart’s mip
and sip CSRs. Each interrupt signal may be arbitrarily delayed traveling from the APLIC to the
proper hart.

At the APLIC, each interrupt signal to a hart is derived from the IE field of register domaincfg
and the current state of the hart’s IDC structure in the memory-mapped control region for the
domain. If either domaincfg.IE = 0 or interrupt delivery to the hart is disabled by the idelivery
register (idelivery = 0), the interrupt signal is held de-asserted. When domaincfg.IE = 1 and
interrupt delivery is enabled (idelivery = 1), the interrupt signal is asserted whenever either
register iforce or topi is not zero.

Due to likely delay in the communication between an APLIC and a hart, it may happen that an
external interrupt trap is taken, yet no interrupt is pending and enabled for the hart when a read of
the hart’s claimi register actually occurs. In such a circumstance, the interrupt identity reported
by the claim will be zero, resulting in an apparent spurious interrupt from the APLIC. Portable
software must be prepared for the possibility of spurious interrupts at the APLIC, which can safely
be ignored and should be rare. For testing purposes, a spurious interrupt can be triggered for a
hart by setting an IDC structure’s iforce register to 1.

A trap handler solely for external interrupts via an APLIC could be written roughly as follows:

save processor registers
i = read register claimi from the hart’s IDC structure at the APLIC
i = i>>16

call the interrupt handler for external interrupt i (minor identity)
restore processor registers
return from trap

To account for spurious interrupts, this pseudocode assumes there is an interrupt handler for
“external interrupt 0” which does nothing.

4.9 Interrupt forwarding by MSIs

In MSI delivery mode (domaincfg.DM = 1), an interrupt domain forwards interrupts to target
harts by MSIs.

An MSI is sent for a specific source only when the source’s corresponding pending and enable bits
are both one and the IE field of register domaincfg is also one. If and when an MSI is sent, the
source’s interrupt pending bit is cleared.
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4.9.1 Addresses and data for outgoing MSIs

To forward interrupts by MSIs, an APLIC must know the MSI target address for each hart. For
any given system, these addresses are fixed and should be hardwired into the APLIC if possi-
ble. However, some APLIC implementations may require that software supply the MSI target
addresses. In that case, the root domain’s registers mmsiaddrcfg, mmsiaddrcfgh, smsiaddrcfg,
and smsiaddrcfgh (Sections 4.5.3 and 4.5.4) may be used to configure the MSI addresses for all
interrupt domains. Alternatively MSI addresses may be configured by some custom means outside
this standard. If MSI target addresses must be configured by software, this should be done only
from a suitably privileged execution mode, typically just once, early after system reset.

For a machine-level interrupt domain, if MSI target addresses are determined by mmsiaddrcfg and
mmsiaddrcfgh, then the address for an outgoing MSI for interrupt source i is computed from those
registers and from the Hart Index field of register target[i] as follows:

g = (Hart Index>>LHXW) & (2HHXW − 1)
h = Hart Index & (2LHXW − 1)
MSI address =

(
Base PPN | (g<<(HHXS + 12)) | (h<<LHXS)

)
<<12

Here, << k and >> k represent shifting left and right by k bits, an ampersand (&) represents bitwise
logical AND, and a vertical bar (|) represents bitwise logical OR. Assuming the recommendations
of Section 3.6 are followed for the arrangement of IMSIC interrupt files in the machine’s address
space, value g is intended to be the number of a hart group (always zero if HHXW = 0), while h is
the number of the target hart within that group. Represented in the terms of Section 3.6, HHXW
= j, LHXW = k, HHXS = E − 24, LHXS = C − 12, and Base PPN = A>>12.

For a supervisor-level domain, if MSI target addresses are determined by the root domain’s config-
uration registers (smsiaddrcfg and others), then to construct the address for an outgoing MSI for
interrupt source i, the Hart Index from register target[i] must first be converted into the index
number that machine-level domains use for the same hart. (These numbers are often the same, but
they may not be.) The address for the MSI is then computed using this machine-level hart index
together with the Base PPN and LHXS values from smsiaddrcfg and smsiaddrcfgh, the other
fields (HHXW, LHXW, and HHXS) from mmsiaddrcfgh, and the Guest Index from target[i], as
follows:

g = (machine-level hart index>>LHXW) & (2HHXW − 1)
h = machine-level hart index & (2LHXW − 1)
MSI address =

(
Base PPN | (g<<(HHXS + 12)) | (h<<LHXS) | Guest Index

)
<<12

Represented in the terms of Section 3.6, HHXW = j, LHXW = k, HHXS = E − 24, LHXS =
D − 12, and Base PPN = B>>12.

The data for an outgoing MSI write is taken from the EIID field of target[i], zero-extended to
32 bits. An MSI’s 32-bit data is always written in little-endian byte order, regardless of the BE
field of the domain’s domaincfg register.
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4.9.2 Special consideration for level-sensitive interrupt sources

As soon as a level-sensitive interrupt is forwarded by MSI, the APLIC clears the pending bit for
the interrupt source and then ignores the source until its incoming signal has been de-asserted.
Clearing the pending bit when an MSI is sent is obviously necessary to avoid a constant stream
of repeated MSIs from the APLIC to the target hart for the same interrupt. However, after an
interrupt service routine has addressed a cause found for the interrupt, the incoming interrupt wire
might remain asserted at the APLIC for another reason, despite that the interrupt’s pending bit
at the APLIC was cleared and will remain so without intervention from software. If the interrupt
service routine then exits without further action, a continued interrupt from this source might never
receive attention.

To avoid dropping interrupts in this way, the interrupt service routine for a level-sensitive interrupt
may do one of the following before exiting:

The first option is to test whether the interrupt wire into the APLIC is still asserted, by reading
the appropriate in clrip register at the APLIC. If the incoming interrupt is still asserted, the
body of the interrupt service routine may be repeated to find and address an additional interrupt
cause before the source wire is tested again. Once the incoming wire is observed not asserted, the
interrupt service routine may safely exit, as any new interrupt assertion will cause the pending bit
to become set and a new MSI sent to the hart.

A second option is for the interrupt service routine to write the APLIC’s source identity number for
the interrupt to the domain’s setipnum register just before exiting. This will cause the interrupt’s
pending bit to be set to one again if the source is still asserting an interrupt, but not if the source
is not asserting an interrupt.

4.9.3 Synchronizing interactions between a hart and the APLIC

When an APLIC sends an MSI to a hart, there is an unspecified travel delay before the MSI is
observed at the hart’s IMSIC. Consequently, after an APLIC’s configuration is changed by writing
to an APLIC register, harts may continue to see MSIs arrive from the APLIC from the time before
the write, for an unspecified amount of time.

It is sometimes necessary to know when no more of these late MSIs can arrive. For example, if
a hart will be turned off (“powered down”), all interrupts directed to it must be redirected to
other harts, which may involve reconfiguring one or more APLICs. Even after the APLICs are
reconfigured, the hart still cannot be safely turned off until it is known no more MSIs are destined
for it.

The genmsi register (Section 4.5.15) exists to allow software to determine when all earlier MSIs
have arrived at a hart. To use genmsi for this purpose, software can dedicate one external interrupt
identity at each hart’s IMSIC interrupt file solely for APLIC synchronization. Assuming there are
multiple harts, an APLIC’s genmsi register should also be protected by a standard mutual-exclusion
lock. The following sequence can then be used to synchronize between an APLIC and a specific
hart:
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1. At the hart’s IMSIC, clear the pending bit for the specific minor interrupt identity i used
exclusively for APLIC synchronization.

2. Acquire the shared lock for the APLIC’s genmsi register.

3. Write genmsi to generate an MSI to the hart with interrupt identity i.

4. Repeatedly read genmsi until bit Busy is false.

5. Release the lock for genmsi.

6. Repeatedly read the pending bit for minor interrupt identity i at the hart’s IMSIC until it is
found set.

The loops of steps 4 and 6 are expected normally to succeed very quickly, often on the first or
second attempt. When this sequence is complete, all earlier MSIs from the APLIC must also have
arrived at the hart’s IMSIC.



Chapter 5

Interrupts for Machine and
Supervisor Levels

The RISC-V Privileged Architecture defines several major identities in the range 0–15 for interrupts
at a hart, including machine-level and supervisor-level external interrupts (numbers 11 and 9),
machine- and supervisor-level timer interrupts (7 and 5), and machine- and supervisor-level software
interrupts (3 and 1). Beyond these major labels, the external interrupts at each privilege level
are given secondary, minor identities by an external interrupt controller such as an APLIC or
IMSIC, distinguishing interrupts from different devices or causes. These minor identities for external
interrupts were covered in Chapters 3 and 4 specifying the IMSIC and APLIC components.

The Advanced Interrupt Architecture reserves another 24 major interrupt identities for additional
local interrupts that arise within or in close proximity to the hart, often for reporting errors.
A mechanism is also defined that allows software to selectively delegate both local and custom
interrupts to the next lower privilege level, or in some cases to inject entirely virtual interrupts into
a lower privilege level.

Lastly, an optional facility lets software assign priorities to major interrupts (such as the timer and
software interrupts, and any local interrupts) such that they may mix with the priorities set for
external interrupts by a PLIC, APLIC, or IMSIC.

5.1 Defined major interrupts and default priorities

Table 5.1 lists all the major interrupts currently defined for RISC-V harts that conform to this
Advanced Interrupt Architecture (AIA). Besides the major interrupts specified by the RISC-V
Privileged Architecture, the AIA adds interrupt numbers 35 and 43 as local interrupts for low- and
high-priority RAS events.

Of the major interrupts controlled by the Privileged Architecture (numbers 0–15), the AIA catego-
rizes the counter overflow interrupt (code 13) as a local interrupt. It is assumed furthermore that
any future definitions for reserved interrupt numbers 14 and 15 will also be local interrupts. Besides
the two RAS interrupts, the AIA additionally reserves major interrupt numbers in the ranges 16–23

55
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Default
priority order Major interrupt numbers Description

Highest 43 Local interrupt: high-priority RAS event
11, 3, 7 Machine interrupts: external, software, timer
9, 1, 5 Supervisor interrupts: external, software, timer
12 Supervisor guest external interrupt
10, 2, 6 VS interrupts: external, software, timer
13 Local interrupt: counter overflow

Lowest 35 Local interrupt: low-priority RAS event

Table 5.1: The standard major interrupt codes, listed in default priority order.

Major interrupt numbers Category

0–12
13–15

Not local interrupts
Local interrupts

}
Assigned by the
Privileged Architecture

16–23 Local interrupts
24–31 Designated for custom use
32–47 Local interrupts
≥ 48 Designated for custom use

Table 5.2: Categorization of current and future major interrupts.

and 32–47 for standard local interrupts that other RISC-V extensions may define. The remaining
major interrupts allocated to the Privileged Architecture, numbers 0–12, are categorized as not
local interrupts. Taken altogether, Table 5.2 summarizes the AIA’s categorization of all major
interrupt identities.

RAS is an abbreviation for Reliability, Availability, and Serviceability. Typically a RAS event
corresponds to the detection of corrupted data (e.g. as a result of a soft or hard error) and/or
the use of such data. The high-priority RAS event local interrupt may, for example, signal an
occurrence of an urgent uncorrected error that needs action from a RAS error handler to contain
the error and, if possible, to recover from it. The low-priority RAS event local interrupt may, for
example, be triggered by non-urgent deferred or corrected errors.

The AIA does not itself require that detected RAS events trigger one of the two local interrupts
defined for this purpose. Systems are free to report any or all RAS events another way, such as by
external interrupts routed through an APLIC or IMSIC, or by custom interrupts.

In all likelihood, the method for reporting a particular RAS event will depend on where in the
system the event is detected. The AIA defines local interrupt numbers for RAS events so systems
have a standard way to report such events when detected locally at a hart, without depending
solely on external or custom interrupts.

As always, platform standards may further constrain how a system reports events, whether
RAS events or other.
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For the standard local interrupts not defined by the RISC-V Privileged Architecture (numbers
16–23 and 32–47), the current plan is to assign default priorities in the order shown in this
table:

Highest 47, 23, 46, 45, 22, 44,
43, 21, 42, 41, 20, 40
11, 3, 7 Machine interrupts: external, software, timer
9, 1, 5 Supervisor interrupts: external, software, timer
12 Supervisor guest external interrupt
10, 2, 6 VS interrupts: external, software, timer
13 Counter overflow interrupt
39, 19, 38, 37, 18, 36,

Lowest 35, 17, 34, 33, 16, 32

Among interrupts 16–23, a higher interrupt number conveys higher default priority, and likewise
for interrupts 32–47. These two groups are interleaved together in the complete order, and the
Privileged Architecture’s standard interrupts, 0–15, are inserted into the middle of the sequence.
This proposed default priority order is arranged so that interrupts 0–31 can potentially be an
adequate subset on their own for 32-bit RISC-V systems.

In actuality, future RISC-V extensions may or may not stick to this plan for the default
priority order of interrupts they define.

In addition to the existing major interrupts of Table 5.1, the following local interrupts are
tentatively proposed, listed in order of decreasing default priority:

23 Bus or system error
45 Per-core high-power or over-temperature event
17 Debug/trace interrupt

These local interrupts are expected to be specified by other RISC-V extensions. Be aware, this
list is not final and may change as the relevant extensions are developed and ratified.

If a future version of the RISC-V Privileged Architecture defines interrupt 0, the Advanced
Interrupt Architecture needs it to have a default priority lower than certain external interrupts.
See Sections 5.2.2 and 5.4.2 on CSRs mtopi and stopi.

Interrupt numbers 24–31 and 48 and higher are all designated for custom use. If a hart implements
any custom interrupts, their positions in the default priority order must be documented for the
hart.

While many of the standard registers such as mip and mie have space for major interrupts
only in the range 0–63, custom interrupts with numbers 64 and above are conceivable with
added custom support. CSRs mtopi (Section 5.2.2) and stopi (Section 5.4.2) allow for major
interrupt numbers potentially as large as 4095.

When a hart supports the arbitrary configuration of interrupt priorities by software (described in
later sections), the default priority order still remains relevant for breaking ties when two interrupt
sources are assigned the same priority number.
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5.2 Interrupts at machine level

For whichever standard local interrupts are implemented, the corresponding bits in CSRs mip and
mie must be writable, and the corresponding bits in mideleg (if that CSR exists because supervisor
mode is implemented) must each either be writable or be hardwired to zero. An occurrence of a
local interrupt event causes the interrupt-pending bit in mip to be set to one. This bit then remains
set until cleared by software.

As established by the RISC-V Privileged Architecture, an interrupt traps to M-mode whenever
all of the following are true: (a) either the current privilege mode is M-mode and machine-level
interrupts are enabled by the MIE bit of mstatus, or the current privilege mode has less privilege
than M-mode; (b) matching bits in mip and mie are both one; and (c) if mideleg exists, the
corresponding bit in mideleg is zero.

When multiple interrupt causes are ready to trigger simultaneously, the interrupt taken first is
determined by priority order, which may be the default order specified in the previous section
(5.1), or may be a modified order configured by software.

5.2.1 Configuring priorities of major interrupts at machine level

The machine-level priorities for major interrupts 0–63 may be configured by a set of registers
accessed through the miselect and mireg CSRs introduced in Chapter 2. When XLEN = 32,
sixteen of these registers are defined, listed below with their miselect addresses:

0x30 iprio0

0x31 iprio1

. . . . . .
0x3F iprio15

Each register controls the priorities of four interrupts, with one 8-bit byte per interrupt. For a
number k in the range 0–15, register ipriok controls the priorities of interrupts k × 4 through
k × 4 + 3, formatted as follows:

bits 7:0 Priority number for interrupt k × 4
bits 15:8 Priority number for interrupt k × 4 + 1
bits 23:16 Priority number for interrupt k × 4 + 2
bits 31:24 Priority number for interrupt k × 4 + 3

When XLEN = 64, only the even-numbered registers exist:

0x30 iprio0

0x32 iprio2

. . . . . .
0x3E iprio14

Each register controls the priorities of eight interrupts. For even k in the range 0–14, register
ipriok controls the priorities of interrupts k × 4 through k × 4 + 7, formatted as follows:
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bits 7:0 Priority number for interrupt k × 4
bits 15:8 Priority number for interrupt k × 4 + 1
bits 23:16 Priority number for interrupt k × 4 + 2
bits 31:24 Priority number for interrupt k × 4 + 3
bits 39:32 Priority number for interrupt k × 4 + 4
bits 47:40 Priority number for interrupt k × 4 + 5
bits 55:48 Priority number for interrupt k × 4 + 6
bits 63:56 Priority number for interrupt k × 4 + 7

When XLEN = 64 and miselect is an odd value in the range 0x31–0x3F, attempting to access
mireg raises an illegal instruction exception.

The valid registers iprio0–iprio15 are known collectively as the iprio array for machine level.

The width of priority numbers for external interrupts is IPRIOLEN. This parameter is affected by
the main external interrupt controller for the hart, whether a PLIC, APLIC, or IMSIC.

For an APLIC, IPRIOLEN is in the range 1–8 as specified in Chapter 4 on the APLIC.

For an IMSIC, IPRIOLEN is 6, 7, or 8. IPRIOLEN may be 6 only if the number of external
interrupt identities implemented by the IMSIC is 63. IPRIOLEN may be 7 only if the number of
external interrupt identities implemented by the IMSIC is no more than 127. IPRIOLEN may be
8 for any IMSIC, regardless of the number of external interrupt identities implemented.

Each byte of a valid ipriok register is either a read-only zero or a WARL unsigned integer field
implementing exactly IPRIOLEN bits. For a given interrupt number, if the corresponding bit in mie

is read-only zero, then the interrupt’s priority number in the iprio array must be read-only zero
as well. The priority number for a machine-level external interrupt (bits 31:24 of register iprio2)
must also be read-only zero. Aside from these two restrictions, implementations may freely choose
which priority number fields are settable and which are read-only zeros. If all bytes in the iprio

array are read-only zeros, priorities can be configured only for external interrupts, not for any other
interrupts.

Platform standards may require that priorities be configurable for certain interrupt causes.

The iprio array accessed via miselect and mireg affects the prioritization of interrupts only when
they trap to M-mode. When an interrupt’s priority number in the array is zero (either read-only
zero or set to zero), its priority is the default order from Section 5.1. Setting an interrupt’s priority
number instead to a nonzero value p gives that interrupt nominally the same priority as a machine-
level external interrupt with priority number p. For a major interrupt that defaults to a higher
priority than machine external interrupts, setting its priority number to a nonzero value lowers its
priority. For a major interrupt that defaults to a lower priority than machine external interrupts,
setting its priority number to a nonzero value raises its priority. When two interrupt causes have
been assigned the same nominal priority, ties are broken by the default priority order. Table 5.3
summarizes the effect of priority numbers on interrupt priority.

When a hart has an IMSIC supporting more than 255 minor identities for external interrupts,
the only non-default priorities that can be configured for other interrupts are those corresponding
to external interrupt identities 1–255, not those of identities 256 or higher.
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Interrupts with default Machine external Interrupts with default
priority above machine interrupts priority below machine
external interrupts external interrupts

Priority number in Priority number from Priority number in
Priority machine-level interrupt controller machine-level
order iprio array (APLIC or IMSIC) iprio array

Highest 0
1 1 1
2 2 2
· · · · · · · · ·
254 254 254
255 255 255

256 and above
(IMSIC only)

Lowest 0

Table 5.3: Effect of the machine-level iprio array on the priorities of interrupts taken in M-mode.
For interrupts with the same priority number, the default order of Section 5.1 prevails.

Implementing the priority configurability of this section requires that a RISC-V hart’s external
interrupt controller communicate to the hart not only the existence of a pending-and-enabled
external interrupt but also the interrupt’s priority number. Typically this implies that the width
of the connection for signaling an external interrupt to the hart is not just a single wire as usual
but now IPRIOLEN+ 1 wires.

It is expected that many systems will forego priority configurability of major interrupts and
simply have the iprio array be all read-only zeros. Systems that need this priority configurability
can try to arrange for each hart’s external interrupt controller to be relatively close to the hart,
by, for example, limiting the system to at most a few small cores connected to an APLIC, or
alternatively by giving every hart its own IMSIC.

If supported, setting the priority number for supervisor-level external interrupts (bits 15:8 of
iprio2) to a nonzero value p has the effect of giving the entire category of supervisor external
interrupts nominally the same priority as a machine external interrupt with priority number p.
But note that this applies only to the case when supervisor external interrupts trap to M-mode.

(Because supervisor guest external interrupts and VS-level external interrupts are required to be
delegated to supervisor level when the hypervisor extension is implemented, the machine-level
priority numbers for these interrupts are always ignored and should be read-only zeros.)

If the system has an original PLIC for backward compatibility with older software, reset should
initialize the machine-level iprio array to all zeros.
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5.2.2 Machine top interrupt CSR (mtopi)

Machine-level CSR mtopi is read-only with width MXLEN. A read of mtopi returns information
about the highest-priority pending-and-enabled interrupt for machine level, in this format:

bits 27:16 IID
bits 7:0 IPRIO

All other bits of mtopi are reserved and read as zeros.

The value of mtopi is zero unless there is an interrupt pending in mip and enabled in mie that is
not delegated to a lower privilege level. When there is a pending-and-enabled major interrupt for
machine level, field IID (Interrupt Identity) is the major identity number of the highest-priority
interrupt, and field IPRIO indicates its priority.

If all bytes of the machine-level iprio array are read-only zeros, a simplified implementation of
field IPRIO is allowed in which its value is always 1 whenever mtopi is not zero.

Otherwise, when mtopi is not zero, if the priority number for the reported interrupt is in the range
1 to 255, IPRIO is simply that number. If the interrupt’s priority number is zero or greater than
255, IPRIO is set to either 0 or 255 as follows:

• If the interrupt’s priority number is greater than 255, then IPRIO is 255 (lowest priority).

• If the interrupt’s priority number is zero and interrupt number IID has a default priority
higher than a machine external interrupt, then IPRIO is 0 (highest priority).

• If the interrupt’s priority number is zero and interrupt number IID has a default priority
lower than a machine external interrupt, then IPRIO is 255 (lowest priority).

To ensure that mtopi is never zero when an interrupt is pending and enabled for machine level,
if major interrupt 0 can trap to M-mode, it must have a default priority lower than a machine
external interrupt.

The value of mtopi is not affected by the global interrupt enable MIE in CSR mstatus.

The RISC-V Privileged Architecture ensures that, when the value of mtopi is not zero, a trap is
taken to M-mode for the interrupt indicated by field IID if either the current privilege mode is M
and mstatus.MIE is one, or the current privilege mode has less privilege than M-mode. The trap
itself does not cause the value of mtopi to change.

The following pseudocode shows how a machine-level trap handler might read mtopi to avoid
redundant restoring and saving of processor registers when an interrupt arrives during the handling
of another trap (either a synchronous exception or an earlier interrupt):
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save processor registers
i = read CSR mcause

if (i >= 0) {

handle synchronous exception i

restore mstatus if necessary
}

if (mstatus.MPIE == 1) {

loop {

i = read CSR mtopi

if (i == 0) exit loop
i = i>>16

call the interrupt handler for major interrupt i
}

}

restore processor registers
return from trap

(This example can be further optimized, but with an increase in complexity.)

5.3 Interrupt filtering and virtual interrupts for supervisor level

When supervisor mode is implemented, the Advanced Interrupt Architecture adds a facility for
software filtering of interrupts and for virtual interrupts, making use of new CSRs mvien (Machine
Virtual Interrupt Enables) and mvip (Machine Virtual Interrupt-Pending bits). Interrupt filtering
permits a supervisor-level interrupt (SEI or SSI) or local or custom interrupt to trap to M-mode
and then be selectively delegated by software to supervisor level, even while the corresponding
bit in mideleg remains zero. The same hardware may also, under the right circumstances, allow
machine level to assert virtual interrupts to supervisor level that have no connection to any real
interrupt events.

Just as with CSRs mip, mie, and mideleg, each bit of registers mvien and mvip corresponds with
an interrupt number in the range 0–63. When a bit in mideleg is zero and the matching bit in
mvien is one, then the same bit position in sip is an alias for the corresponding bit in mvip. A
bit in sip is read-only zero when the corresponding bits in mideleg and mvien are both zero. The
combined effects of mideleg and mvien on sip and sie are summarized in Table 5.4.

mideleg[n] mvien[n] sip[n] sie[n]

0 0 Read-only 0 Read-only 0
0 1 Alias of mvip[n] Writable
1 – Alias of mip[n] Alias of mie[n]

Table 5.4: The effects of mideleg and mvien on sip and sie (except for the hypervisor extension’s
VS-level interrupts, which appear in hip and hie instead of sip and sie). A bit in mvien can
be set to 1 only for major interrupts 1, 9, and 13–63. For interrupts 0–12, aliases in sip may be
read-only, as specified by the RISC-V Privileged Architecture.
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The name of CSR mvien is not “ mvie” because the function of this register is more analogous
to mcounteren than to mie. The bits of mvien control whether the virtual interrupt-pending bits
in register mvip are active and visible at supervisor level. This is different than how the usual
interrupt-enable bits (such as in mie) mask pending interrupts.

A bit in sie is writable if and only if the corresponding bit is set in either mideleg or mvien. When
an interrupt is delegated by mideleg, the writable bit in sie is an alias of the corresponding bit
in mie; else it is an independent writable bit. As usual, bits that are not writable in sie must be
read-only zeros.

If a bit of mideleg is zero and the corresponding bit in mvien is changed from zero to one, then
the value of the matching bit in sie becomes unspecified. Likewise, if a bit of mvien is one and
the corresponding bit in mideleg is changed from one to zero, the value of the matching bit in sie

again becomes unspecified.

For interrupt numbers 13–63, implementations may freely choose which bits of mvien are writable
and which bits are read-only zero or one. If such a bit in mvien is read-only zero (preventing the
virtual interrupt from being enabled), the same bit should be read-only zero in mvip. All other bits
for interrupts 13–63 must be writable in mvip.

Platform standards or other extensions may require that bits of mvien for certain interrupt
causes be writable, or be read-only zero or one.

The bits of mvien for supervisor software interrupts (code 1) and supervisor external interrupts
(code 9) are each either writable or read-only zero; they cannot be read-only ones. The other bits
of mvien for interrupts 0–12 are reserved and must be read-only zeros.

It is strongly recommended that bit 9 of mvien be writable. Furthermore, if bit 1 (SSIP) of mip
can be set automatically by an interrupt controller and not just by explicit writes to mip or sip, it
is strongly recommended that bit 1 of mvien also be writable.

When bit 1 of mvien is zero, bit 1 of mvip is an alias of the same bit (SSIP) of mip. But when bit 1
of mvien is one, bit 1 of mvip is a separate writable bit independent of mip.SSIP. When the value
of bit 1 of mvien is changed from zero to one, the value of bit 1 of mvip becomes unspecified.

Bit 5 of mvip is an alias of the same bit (STIP) in mip when that bit is writable in mip. When
STIP is not writable in mip (such as when menvcfg.STCE = 1), bit 5 of mvip is read-only zero.

When bit 9 of mvien is zero, bit 9 of mvip is an alias of the software-writable bit 9 of mip (SEIP).
But when bit 9 of mvien is one, bit 9 of mvip is a writable bit independent of mip.SEIP. Unlike for
bit 1, changing the value of bit 9 of mvien does not affect the value of bit 9 of mvip.

When bit 9 of mvien is zero, bit 9 of mvip makes the software-writable SEIP bit of mip directly
accessible by itself.

Except for bits 1, 5, and 9 as specified above, the bits of mvip in the range 12:0 are reserved and
must be read-only zeros.

The value of bit 9 of mvien has some additional consequences for supervisor external interrupts:
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• When bit 9 of mvien is zero, the software-writable SEIP bit (bit 9 of mvip) interacts with reads
and writes of mip in the way specified by the RISC-V Privileged Architecture. In particular,
for most purposes, the value of bit 9 of mvip is logically ORed into the readable value of
mip.SEIP. But when bit 9 of mvien is one, bit SEIP in mip is read-only and does not include
the value of bit 9 of mvip. Rather, the value of mip.SEIP is simply the supervisor external
interrupt signal from the hart’s external interrupt controller (APLIC or IMSIC).

• If the hart has an IMSIC, then when bit 9 of mvien is one, attempts from S-mode to explicitly
access the supervisor-level interrupt file raise an illegal instruction exception. The exception
is raised for attempts to access CSR stopei, or to access sireg when siselect has a value
in the range 0x70–0xFF. Accesses to guest interrupt files (through vstopei or vsiselect +
vsireg) are not affected.

When the hypervisor extension is implemented, if a bit is zero in the same position in both mideleg

and mvien, then that bit is read-only zero in hideleg (in addition to being read-only zero in
sip, sie, hip, and hie). But if a bit for one of interrupts 13–63 is a one in either mideleg or
mvien, then the same bit in hideleg may be writable or may be read-only zero, depending on the
implementation. No bits in hideleg are ever read-only ones. The RISC-V Privileged Architecture
further constrains bits 12:0 of hideleg.

When supervisor mode is implemented, the minimal required implementation of mvien and mvip

has all bits being read-only zeros except for mvip bits 1 and 9, and sometimes bit 5, each of which
is an alias of an existing writable bit in mip. (Although, as noted, it is strongly recommended that
bit 9 of mvien also be writable.) When supervisor mode is not implemented, registers mvien and
mvip do not exist.

5.4 Interrupts at supervisor level

If a standard local interrupt becomes pending (= 1) in sip, the bit in sip is writable and will
remain set until cleared by software.

Just as for machine level, the taking of interrupt traps at supervisor level remains essentially the
same as specified by the RISC-V Privileged Architecture. An interrupt traps into S-mode (or
HS-mode) whenever all of the following are true: (a) either the current privilege mode is S-mode
and supervisor-level interrupts are enabled by the SIE bit of sstatus, or the current privilege mode
has less privilege than S-mode; (b) matching bits in sip and sie are both one, or, if the hypervisor
extension is implemented, matching bits in hip and hie are both one; and (c) if the hypervisor
extension is implemented, the corresponding bit in hideleg is zero.

5.4.1 Configuring priorities of major interrupts at supervisor level

Supervisor-level priorities for major interrupts 0–63 are optionally configurable in an array of
supervisor-level ipriok registers accessed through siselect and sireg. This array has the same
structure when XLEN = 32 or 64 as does the machine-level iprio array. To summarize, when
XLEN = 32, there are sixteen 32-bit registers with these siselect addresses:
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0x30 iprio0

0x31 iprio1

. . . . . .
0x3F iprio15

Each register controls the priorities of four interrupts, one 8-bit byte per interrupt. When XLEN
= 64, only the even-numbered registers exist:

0x30 iprio0

0x32 iprio2

. . . . . .
0x3E iprio14

Each register controls the priorities of eight interrupts. If XLEN = 64 and siselect is an odd
value in the range 0x31–0x3F, attempting to access sireg raises an illegal instruction exception.

The valid registers iprio0–iprio15 are known collectively as the iprio array for supervisor level.
Each byte of a valid ipriok register is either a read-only zero or a WARL unsigned integer field
implementing exactly IPRIOLEN bits.

For a given interrupt number, if the corresponding bit in sie is read-only zero, then the interrupt’s
priority number in the supervisor-level iprio array must be read-only zero as well. The priority
number for a supervisor-level external interrupt (bits 15:8 of iprio2) must also be read-only zero.
Aside from these two restrictions, implementations may freely choose which priority number fields
are settable and which are read-only zeros.

As always, platform standards may require that priorities be configurable for certain interrupt
causes.

It is expected that many higher-end systems will not support the ability to configure the priorities
of major interrupts at supervisor level as described in this section. Linux in particular is not
designed to take advantage of such facilities if provided. The iprio array must be accessible but
may simply be all read-only zeros.

The supervisor-level iprio array accessed via siselect and sireg affects the prioritization of
interrupts only when they trap to S-mode. When an interrupt’s priority number in the array is
zero (either read-only zero or set to zero), its priority is the default order from Section 5.1. Setting
an interrupt’s priority number instead to a nonzero value p gives that interrupt nominally the
same priority as a supervisor-level external interrupt with priority number p. For an interrupt that
defaults to a higher priority than supervisor external interrupts, setting its priority number to a
nonzero value lowers its priority. For an interrupt that defaults to a lower priority than supervisor
external interrupts, setting its priority number to a nonzero value raises its priority. When two
interrupt causes have been assigned the same nominal priority, ties are broken by the default priority
order. Table 5.5 summarizes the effect of priority numbers on interrupt priority.

If supported, setting the priority number for VS-level external interrupts (bits 23:16 of iprio2) to
a nonzero value p has the effect of giving the entire category of VS external interrupts nominally
the same priority as a supervisor external interrupt with priority number p, when VS external
interrupts trap to S-mode.
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Interrupts with default Supervisor external Interrupts with default
priority above supervisor interrupts priority below supervisor

external interrupts external interrupts

Priority number in Priority number from Priority number in
Priority supervisor-level interrupt controller supervisor-level
order iprio array (APLIC or IMSIC) iprio array

Highest 0
1 1 1
2 2 2
· · · · · · · · ·
254 254 254
255 255 255

256 and above
(IMSIC only)

Lowest 0

Table 5.5: Effect of the supervisor-level iprio array on the priorities of interrupts taken in S-mode.
For interrupts with the same priority number, the default order of Section 5.1 prevails.

If the system has an original PLIC for backward compatibility with older software, reset should
initialize the supervisor-level iprio array to all zeros.

5.4.2 Supervisor top interrupt CSR (stopi)

Supervisor-level CSR stopi is read-only with width SXLEN. A read of stopi returns information
about the highest-priority pending-and-enabled interrupt for supervisor level, in this format:

bits 27:16 IID
bits 7:0 IPRIO

All other bits of stopi are reserved and read as zeros.

The value of stopi is zero unless: (a) there is an interrupt that is both pending in sip and enabled
in sie, or, if the hypervisor extension is implemented, both pending in hip and enabled in hie; and
(b) the interrupt is not delegated to a lower privilege level (by hideleg, if the hypervisor extension
is implemented). When there is a pending-and-enabled major interrupt for supervisor level, field
IID is the major identity number of the highest-priority interrupt, and field IPRIO indicates its
priority.

If all bytes of the supervisor-level iprio array are read-only zeros, a simplified implementation of
field IPRIO is allowed in which its value is always 1 whenever stopi is not zero.

Otherwise, when stopi is not zero, if the priority number for the reported interrupt is in the range
1 to 255, IPRIO is simply that number. If the interrupt’s priority number is zero or greater than
255, IPRIO is set to either 0 or 255 as follows:

• If the interrupt’s priority number is greater than 255, then IPRIO is 255 (lowest priority).
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• If the interrupt’s priority number is zero and interrupt number IID has a default priority
higher than a supervisor external interrupt, then IPRIO is 0 (highest priority).

• If the interrupt’s priority number is zero and interrupt number IID has a default priority
lower than a supervisor external interrupt, then IPRIO is 255 (lowest priority).

To ensure that stopi is never zero when an interrupt is pending and enabled for supervisor level,
if major interrupt 0 can trap to S-mode, it must have a default priority lower than a supervisor
external interrupt.

The value of stopi is not affected by the global interrupt enable SIE in CSR sstatus.

The RISC-V Privileged Architecture ensures that, when the value of stopi is not zero, a trap is
taken to S-mode for the interrupt indicated by field IID if either the current privilege mode is S
and sstatus.SIE is one, or the current privilege mode has less privilege than S-mode. The trap
itself does not cause the value of stopi to change.

The following pseudocode shows how a supervisor-level trap handler might read stopi to avoid
redundant restoring and saving of processor registers when an interrupt arrives during the handling
of another trap (either a synchronous exception or an earlier interrupt):

save processor registers
i = read CSR scause

if (i >= 0) {

handle synchronous exception i

restore sstatus if necessary
}

if (sstatus.SPIE == 1) {

loop {

i = read CSR stopi

if (i == 0) exit loop
i = i>>16

call the interrupt handler for major interrupt i
}

}

restore processor registers
return from trap

(This example can be further optimized, but with an increase in complexity.)

5.5 WFI (Wait for Interrupt) instruction

The RISC-V Privileged Architecture specifies that instruction WFI (Wait for Interrupt) may sus-
pend execution at a hart until an interrupt is pending for the hart. The Advanced Interrupt
Architecture (AIA) redefines when execution must resume following a WFI.
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According to the RISC-V Privileged Architecture, instruction execution must resume from a WFI
whenever any interrupt is both pending and enabled in CSRs mip and mie, ignoring any delegation
indicated by mideleg. With the AIA, this succinct rule is no longer appropriate, due to the
mechanisms the AIA adds for virtual interrupts. Instead, execution must resume from a WFI
whenever an interrupt is pending at any privilege level (regardless of whether the interrupt privilege
level is higher or lower than the hart’s current privilege mode).

An interrupt is pending at machine level if register mtopi is not zero. If S-mode is implemented,
an interrupt is pending at supervisor level if stopi is not zero. And if the hypervisor extension is
implemented, an interrupt is pending at VS level if vstopi (Section 6.3.3) is not zero.

The AIA’s rule for WFI gives the same behavior as the Privileged Architecture’s rule when
mvien = 0 and, if the hypervisor extension is implemented, also hvien = 0 and hvictl.VTI
= 0, thus disabling all virtual interrupts not visible in mip. (The AIA’s hypervisor registers are
covered in the next chapter, “Interrupts for Virtual Machines (VS Level)”.)



Chapter 6

Interrupts for Virtual Machines (VS
Level)

When the hypervisor extension is implemented, a hart’s set of possible privilege modes includes
the virtual supervisor (VS) and virtual user (VU) modes for hosting virtual harts. The Advanced
Interrupt Architecture adds to the hypervisor extension new interrupt facilities aligned with those
described earlier for supervisor-level interrupts.

As introduced in Chapter 2, several hypervisor and VS CSRs are added: hvien, hvictl, hviprio1,
hviprio2, vsiselect, vsireg, vstopei, and vstopi. (And for RV32, the following high-half CSRs
are also added: hidelegh, hvienh, hviph, hviprio1h, hviprio2h, vsiph, and vsieh.) As always,
when executing in VS-mode or VU-mode, the VS CSRs substitute for the corresponding supervisor
CSRs.

To give software that runs in a virtual machine the appearance of executing on a real machine
that implements the Advanced Interrupt Architecture at supervisor level, responsibility is shared
between hypervisor software and the hardware facilities described in this chapter. While some be-
haviors can be handled directly by hardware, others require significant emulation by the hypervisor,
sometimes with hardware assistance.

6.1 VS-level external interrupts with a guest interrupt file

When a hart implements the hypervisor extension, it is recommended that the hart also have an
IMSIC with guest interrupt files. Assuming guest interrupt files are available, each can be assigned
to a virtual hart at the physical hart to act as the supervisor-level interrupt file for that virtual
hart. If there are N guest interrupt files, then N virtual harts at that physical hart may each
have a physical guest interrupt file to serve as its (virtual) supervisor-level interrupt file. The guest
interrupt file for the current virtual hart is always indicated by the VGEIN field of CSR hstatus.
When VGEIN is not the valid number of a guest interrupt file, the current virtual hart has no guest
interrupt file to act as its supervisor-level interrupt file.

69
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When hstatus.VGEIN is the valid number of a guest interrupt file, values of vsiselect in the
range 0x70–0xFF select registers of this guest interrupt file, just as values of siselect in the same
range select registers of the IMSIC’s true supervisor-level interrupt file. The registers of an interrupt
file that are accessed indirectly through vsiselect and vsireg are documented in Chapter 3 on
the IMSIC, along with IMSIC-only CSR vstopei. Because all IMSIC interrupt files act identically,
the guest interrupt file that a virtual hart accesses through CSRs siselect, sireg, and stopei is
indistinguishable from a true supervisor-level interrupt file as seen from S-mode (or HS-mode).

In addition to an IMSIC at each hart, a virtual machine may also need to see a PLIC or APLIC.
However, unlike an IMSIC’s ability to provide physical guest interrupt files for virtual harts, a
PLIC or APLIC must be emulated for a virtual machine by the hypervisor.

The Advanced Interrupt Architecture does not currently include hardware assistance for virtual-
izing an APLIC. For small numbers of harts, such hardware would be substantially larger than
that required to implement guest interrupt files for an IMSIC. It is assumed that most high-
performance I/O can be done through devices that can send MSIs directly to guest interrupt files
(such as devices attached through a PCI Express interconnect). For the types of devices whose
interrupts must go through a (virtual) APLIC, the overhead cost of emulating the APLIC is
expected to be less significant.

When a virtual hart appears to have an IMSIC because a guest interrupt file is assigned to it, all
external interrupts, real or emulated, destined for the virtual hart must go through this perceived
IMSIC. A hypervisor can easily inject an emulated external interrupt into the guest interrupt file
selected by hstatus.VGEIN by setting a bit in the interrupt-pending array indirectly accessed
through vsiselect and vsireg. When a virtual hart has a guest interrupt file, a hypervisor is not
normally expected to set bit VSEIP in CSR hvip.

In the special case that an emulated APLIC for a virtual machine has a wired interrupt source
that equates to an actual interrupt source of a real APLIC, if software running in this virtual
machine configures its virtual APLIC to forward interrupts from that source as MSIs to a specific
virtual hart, the hypervisor can configure the real APLIC to forward the actual interrupts directly
as MSIs to the virtual hart’s guest interrupt file. In this way, although the hypervisor must trap
and emulate the virtual machine’s memory accesses that configure the forwarding of interrupts at
the virtual APLIC, the interrupts themselves can be converted automatically into real MSIs for the
guest interrupt file, without the hypervisor being invoked for each arriving interrupt.

6.1.1 Direct control of a device by a guest OS

To ensure proper support for interrupts, two conditions must be met before a hypervisor may allow
a guest OS running in a virtual machine to directly control a physical device that sends MSIs: First,
each virtual hart must have a guest interrupt file assigned to it, giving each its own apparent IMSIC
within the virtual machine. Second, interrupts from the device must be signaled by wire through
an APLIC that can translate these interrupts into MSIs, or the system must have an IOMMU that
can translate the addresses of MSI memory writes made by the device itself.

If a guest OS directly controls a device capable of sending MSIs, it will naturally configure MSIs
at the device with the guest physical addresses the OS sees for the IMSICs of its virtual harts,
not knowing that these addresses are only virtual. When the device performs a memory write
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for an MSI, the destination address of this write must be translated by the IOMMU from the
guest physical address assigned by the guest OS into the true physical address of the target guest
interrupt file, using a translation table supplied by the hypervisor.

By design, the translation an IOMMU must do for device MSIs is fundamentally no different than
the address translation the IOMMU already must perform for other memory accesses from the
same device, converting guest physical addresses into true physical addresses. Because each virtual
hart is assigned a dedicated, physical guest interrupt file that is indistinguishable from a true
supervisor-level interrupt file, no translation is needed for the data of an MSI write, which specifies
the interrupt’s identity number in the target interrupt file.

6.1.2 Migrating a virtual hart to a different guest interrupt file

When it is necessary to move a virtual hart from one physical hart to another, if the virtual hart
uses a guest interrupt file, the specific guest interrupt file assigned to it must change from the one in
use at the old physical hart to a different one at the new physical hart. Because each guest interrupt
file is physically tied to a single physical hart, a virtual hart cannot bring its guest interrupt file
with it when it moves.

The process of migrating a virtual hart from one guest interrupt file to another is more complex
than moving most other state held by the virtual hart. After the destination guest interrupt file
has been chosen at the new physical hart, the following steps are recommended:

1. At the old interrupt file, save to memory the values of registers eidelivery and eithreshold,
and set eidelivery = 0.

2. At the new interrupt file, set eidelivery = 0, and zero all implemented interrupt-pending
bits (the eip array).

3. Modify the relevant translation tables at all IOMMUs so that MSIs for this virtual interrupt
file are now sent to the new physical interrupt file. Likewise, if any interrupts at an APLIC
are forwarded by MSIs to the old interrupt file, reconfigure the APLIC to send them to the
new interrupt file. As needed, synchronize with all IOMMUs and APLICs to ensure that
no straggler MSIs will arrive at the old interrupt file after this step. Synchronizing with an
APLIC can be accomplished using the algorithm of Section 4.9.3.

4. At the old interrupt file, dump to memory all implemented interrupt-pending and interrupt-
enable bits (the eip and eie arrays). After this step is done, the old interrupt file is no longer
in use.

5. At the new interrupt file, logically OR the interrupt-pending bits that were saved in step 4
into the new interrupt file, using instruction CSRS to write to the eip array. Also, load the
interrupt-enable bits that were saved in step 4 into the eie array.

6. At the new interrupt file, load registers eithreshold and eidelivery with the values that
were saved in step 1.
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Resuming execution of the virtual hart at the new physical hart is not recommended until the entire
interrupt file has been fully migrated.

Resuming execution of the virtual hart before the interrupt file is fully migrated could allow
software running in the virtual machine to see multiple MSIs arriving from a single device in
an order that should not happen. While this would rarely matter in practice, it runs the risk of
wedging a device driver that depends (perhaps inadvertently) on a valid ordering of events.

6.2 VS-level external interrupts without a guest interrupt file

Although it is recommended that harts implementing the hypervisor extension also have IMSICs
with guest interrupt files, this is not a requirement. Even assuming guest interrupt files exist, it
may happen that there are more virtual harts at a physical hart than guest interrupt files, leaving
some virtual harts without one. In either case, a hypervisor must emulate an external interrupt
controller for a virtual hart without the benefit of a guest interrupt file allocated to the virtual
hart.

When emulating an external interrupt controller for a virtual hart, if configurable interrupt priority
is not supported for the virtual hart other than for external interrupts, then external interrupts
may be asserted to VS level simply by setting bit VSEIP in hvip, as defined by the RISC-V
Privileged Architecture. However, to emulate both an external interrupt controller and priority
configurability for non-external interrupts, a hypervisor must make use of CSR hvictl (Hypervisor
Virtual Interrupt Control), described later in the next section.

6.3 Interrupts at VS level

6.3.1 Configuring priorities of major interrupts at VS level

Like for supervisor level, the Advanced Interrupt Architecture optionally allows major VS-level
interrupts to be configured by software to intermix in priority with VS-level external interrupts.
As documented in Section 5.4, interrupt priorities for supervisor level are configured by the iprio
array accessed indirectly through CSRs siselect and sireg. The siselect addresses for the
iprio array registers are 0x30–0x3F.

VS level has its own vsiselect and vsireg, but unlike supervisor level, there are no registers at
vsiselect addresses 0x30–0x3F. When vsiselect has a value in the range 0x30–0x3F, an attempt
from VS-mode to access sireg (really vsireg) causes a virtual instruction exception. To give a
virtual hart the illusion of an array of iprio registers accessed through siselect and sireg, a
hypervisor must emulate the VS-level iprio array when accesses to sireg from VS-mode cause
virtual instruction traps.

Instead of a physical VS-level iprio array, a separate hardware mechanism is provided for con-
figuring the priorities of a subset of interrupts for VS level, using hypervisor CSRs hviprio1 and
hviprio2. The subset of major interrupt numbers whose priority may be configured in hardware
are these:



Chapter 6. Interrupts for Virtual Machines (VS Level) 73

1 Supervisor software interrupt
5 Supervisor timer interrupt
13 Counter overflow interrupt

14–23 Reserved for standard local interrupts

For interrupts directed to VS level, software-configurable priorities are not supported in hardware
for standard local interrupts in the range 32–48.

For custom interrupts, priority configurability may be supported in hardware by custom CSRs,
expanding upon hviprio1 and hviprio2 for standard interrupts.

Registers hviprio1 and hviprio2 have these formats:

hviprio1:

bits 7:0 Reserved for priority number for interrupt 0; reads as zero
bits 15:8 Priority number for interrupt 1, supervisor software interrupt
bits 23:16 Reserved for priority number for interrupt 4; reads as zero
bits 31:24 Priority number for interrupt 5, supervisor timer interrupt
bits 39:32 Reserved for priority number for interrupt 8; reads as zero
bits 47:40 Priority number for interrupt 13, counter overflow interrupt
bits 55:48 Priority number for interrupt 14
bits 63:56 Priority number for interrupt 15

hviprio2:

bits 7:0 Priority number for interrupt 16
bits 15:8 Priority number for interrupt 17
bits 23:16 Priority number for interrupt 18
bits 31:24 Priority number for interrupt 19
bits 39:32 Priority number for interrupt 20
bits 47:40 Priority number for interrupt 21
bits 55:48 Priority number for interrupt 22
bits 63:56 Priority number for interrupt 23

Each priority number in hviprio1 and hviprio2 is a WARL unsigned integer field that is either
read-only zero or implements a minimum of IPRIOLEN bits or 6 bits, whichever is larger, and
preferably all 8 bits. Implementations may freely choose which priority number fields are read-
only zeros, but all other fields must implement the same number of integer bits. A minimal
implementation of these CSRs has them both be read-only zeros.

A hypervisor can choose to employ registers hviprio1 and hviprio2 when emulating the (virtual)
supervisor-level iprio array accessed indirectly through siselect and sireg (really vsiselect

and vsireg) for a virtual hart. For interrupts not in the subset supported by hviprio1 and
hviprio2, the priority number bytes in the emulated iprio array can be read-only zeros.

Providing hardware support for configurable priority for only a subset of major interrupts at
VS level is a compromise. The utility of being able to control interrupt priorities at VS level
is arguably illusory when all traps to M-mode and HS-mode—both interrupts and synchronous
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exceptions—have absolute priority, and when each virtual hart may also be competing for re-
sources against other virtual harts well beyond its control. Nevertheless, priority configurability
has been made possible for the most likely subset of interrupts, while minimizing the number of
added CSRs that must be swapped on a virtual hart switch.

Major interrupts outside the priority-configurable subset can still be directed to VS level, but
their priority will simply be the default order defined in Section 5.1.

If a hypervisor really must emulate configurability of priority for interrupts beyond the subset
supported by hviprio1 and hviprio2, it can do so with extra effort by setting bit VTI of CSR
hvictl, described in the next subsection.

6.3.2 Virtual interrupts for VS level

Assuming a virtual hart does not need configurable priority for major interrupts beyond the subset
supported in hardware by hviprio1 and hviprio2, a hypervisor can assert interrupts to the vir-
tual hart using CSRs hvien (Hypervisor Virtual-Interrupt-Enable) and hvip (Hypervisor Virtual-
Interrupt-Pending bits). These CSRs affect interrupts for VS level much the same way that mvien
and mvip do for supervisor level, as explained in Section 5.3.

Each bit of registers hvien and hvip corresponds with an interrupt number in the range 0–63.
Bits 12:0 of hvien are reserved and must be read-only zeros, while bits 12:0 of hvip are defined
by the RISC-V Privileged Architecture. Specifically, bits 10, 6, and 2 of hvip are writable bits
that correspond to VS-level external interrupts (VSEIP), VS-level timer interrupts (VSTIP), and
VS-level software interrupts (VSSIP), respectively.

The following applies only to the CSR bits for interrupt numbers 13–63: When a bit in hideleg

is one, then the same bit position in vsip is an alias for the corresponding bit in sip. Else, when
a bit in hideleg is zero and the matching bit in hvien is one, the same bit position in vsip is an
alias for the corresponding bit in hvip. A bit in vsip is read-only zero when the corresponding
bits in hideleg and hvien are both zero. The combined effects of hideleg and hvien on vsip and
vsie are summarized in Table 6.1.

hideleg[n] hvien[n] vsip[n] vsie[n]

0 0 Read-only 0 Read-only 0
0 1 Alias of hvip[n] Writable
1 – Alias of sip[n] Alias of sie[n]

Table 6.1: The effects of hideleg and hvien on vsip and vsie for major interrupts 13–63.

For interrupt numbers 13–63, a bit in vsie is writable if and only if the corresponding bit is set
in either hideleg or hvien. When an interrupt is delegated by hideleg, the writable bit in vsie

is an alias of the corresponding bit in sie; else it is an independent writable bit. The Privileged
Architecture specifies when bits 12:0 of vsie are aliases of bits in hie. As usual, bits that are not
writable in vsie must be read-only zeros.



Chapter 6. Interrupts for Virtual Machines (VS Level) 75

If a bit of hideleg is zero and the corresponding bit in hvien is changed from zero to one, then the
value of the matching bit in vsie becomes unspecified. Likewise, if a bit of hvien is one and the
corresponding bit in hideleg is changed from one to zero, the value of the matching bit in vsie

again becomes unspecified.

For interrupt numbers 13–63, implementations may freely choose which bits of hvien are writable
and which bits are read-only zero or one. If such a bit in hvien is read-only zero (preventing the
virtual interrupt from being enabled), the same bit should be read-only zero in hvip. All other bits
for interrupts 13–63 must be writable in hvip.

CSR hvictl (Hypervisor Virtual Interrupt Control) provides further flexibility for injecting inter-
rupts into VS level in situations not fully supported by the facilities described thus far, but only
with more active involvement of the hypervisor. A hypervisor must use hvictl for any of the
following:

• asserting for VS level a major interrupt not supported by hvien and hvip;

• implementing configurability of priorities at VS level for major interrupts beyond those sup-
ported by hviprio1 and hviprio2; or

• emulating an external interrupt controller for a virtual hart without the use of an IMSIC’s
guest interrupt file, while also supporting configurable priorities both for external interrupts
and for major interrupts to the virtual hart.

The format of hvictl is:

bit 30 VTI
bits 27:16 IID (WARL)
bit 9 DPR
bit 8 IPRIOM
bits 7:0 IPRIO

All other bits of hvictl are reserved and read as zeros.

When bit VTI (Virtual Trap Interrupt control) = 1, attempts from VS-mode to explicitly access
CSRs sip and sie (or, for RV32 only, siph and sieh) cause a virtual instruction exception.
Furthermore, for any given CSR, if there is some circumstance in which a write to the register
may cause a bit of vsip to change from one to zero, excluding bit 9 for external interrupts (SEIP),
then when VTI = 1, a virtual instruction exception is raised also for any attempt by the guest to
write this register. Both the value being written to the CSR and the value of vsip (before or after)
are ignored for determining whether to raise the exception. (Hence a write would not actually
need to change a bit of vsip from one to zero for the exception to be raised.) In particular, if
register vstimecmp is implemented (from extension Sstc), then attempts from VS-mode to write to
stimecmp (or, for RV32 only, stimecmph) cause a virtual instruction exception when VTI = 1.

For the standard local interrupts (major identities 13–23 and 32–47), and for software inter-
rupts (SSI), the corresponding interrupt-pending bits in vsip are defined as “sticky,” meaning a
guest can clear them only by writing directly to sip (really vsip). Among the standard-defined
interrupts, that leaves only timer interrupts (STI), which can potentially be cleared in vsip by
writing a new value to vstimecmp.
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All hvictl fields together can affect the value of CSR vstopi (Virtual Supervisor Top Interrupt)
and therefore the interrupt identity reported in vscause when an interrupt traps to VS-mode. IID
is a WARL unsigned integer field with at least 6 implemented bits, while IPRIO is always the full
8 bits. If k bits are implemented for IID, then all values 0 through 2k − 1 are supported, and a
write to hvictl sets IID equal to bits (15 + k):16 of the value written.

For a virtual interrupt specified for VS level by hvictl, if VTI = 1 and IID ̸= 9, field DPR (Default
Priority Rank) determines the interrupt’s presumed default priority order relative to a (virtual)
supervisor external interrupt (SEI), major identity 9, as follows:

0 = interrupt has higher default priority than an SEI
1 = interrupt has lower default priority than an SEI

When hvictl.IID = 9, DPR is ignored.

6.3.3 Virtual supervisor top interrupt CSR (vstopi)

Read-only CSR vstopi is VSXLEN bits wide and has the same format as stopi:

bits 27:16 IID
bits 7:0 IPRIO

vstopi returns information about the highest-priority interrupt for VS level, found from among
these candidates (prefixed by + signs):

• if bit 9 is one in both vsip and vsie, hstatus.VGEIN is the valid number of a guest interrupt
file, and vstopei is not zero:

+ a supervisor external interrupt (code 9) with the priority number indicated by vstopei;

• if bit 9 is one in both vsip and vsie, hstatus.VGEIN = 0, and hvictl fields IID = 9 and
IPRIO ̸= 0:

+ a supervisor external interrupt (code 9) with priority number hvictl.IPRIO;

• if bit 9 is one in both vsip and vsie, and neither of the first two cases applies:

+ a supervisor external interrupt (code 9) with priority number 256;

• if hvictl.VTI = 0:

+ the highest-priority pending-and-enabled major interrupt indicated by vsip and vsie

other than a supervisor external interrupt (code 9), using the priority numbers assigned
by hviprio1 and hviprio2;

• if hvictl fields VTI = 1 and IID ̸= 9:

+ the major interrupt specified by hvictl fields IID, DPR, and IPRIO.
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In the list above, all “supervisor” external interrupts are virtual, directed to VS level, having major
code 9 at VS level.

The list of candidate interrupts can be reduced to two finalists relatively easily by observing that
the first three list items are mutually exclusive of one another, and the remaining two items are
also mutually exclusive of one another.

When hvictl.VTI = 1, the absence of an interrupt for VS level can be indicated only by setting
hvictl.IID = 9. Software might want to use the pair IID = 9, IPRIO = 0 generally to represent
no interrupt in hvictl.

When no interrupt candidates satisfy the conditions of the list above, vstopi is zero. Else, vstopi
fields IID and IPRIO are determined by the highest-priority interrupt from among the candidates.
The usual priority order for supervisor level applies, as specified by Table 5.5 on page 66, except that
priority numbers are taken from the candidate list above, not from the supervisor-level iprio array.
Ties in nominal priority are broken as usual by the default priority order from Section 5.1, unless
hvictl fields VTI = 1 and IID ̸= 9 (last item in the candidate list above), in which case default
priority order is determined solely by hvictl.DPR. If bit IPRIOM (IPRIO Mode) of hvictl is zero,
IPRIO in vstopi is 1; else, if the priority number for the highest-priority candidate is within the
range 1 to 255, IPRIO is that value; else, IPRIO is set to either 0 or 255 in the manner documented
for stopi in Section 5.4.2.

6.3.4 Interrupt traps to VS-mode

The Advanced Interrupt Architecture modifies the standard RISC-V Privileged Architecture such
that an interrupt is pending at VS level if and only if vstopi is not zero. CSRs vsip and vsie

do not by themselves determine whether a VS-level interrupt is pending, though they may do so
indirectly through their effect on vstopi.

Whenever vstopi is not zero, if either the current privilege mode is VS-mode and the SIE bit in
CSR vsstatus is one, or the current privilege mode is VU-mode, a trap is taken to VS-mode for
the interrupt indicated by field IID of vstopi.

The Exception Code field of vscause must implement at least as many bits as needed to represent
the largest value that field IID of vstopi can have for the given hart.
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Chapter 7

Interprocessor Interrupts (IPIs)

By default, unless a platform has a different mechanism for interprocessor interrupts (IPIs), the
RISC-V Privileged Architecture specifies that a machine with multiple harts must provide for each
hart an implementation-defined memory address that can be written to signal a machine-level
software interrupt (major code 3) at that hart. IPIs at machine level can thus be sent to any hart
as machine-level software interrupts.

A RISC-V software interrupt acts only as a minimal “doorbell” signal. Software at the receiving
hart is responsible for recognizing an incoming software interrupt as an IPI and decoding its
purpose further, usually making use of additional data stored by the sender in ordinary memory.

The same kind of mechanism (but with a different set of memory addresses) may or may not exist
for signaling supervisor-level software interrupts (major code 1) at remote harts as well. If not
directly supported in this way, a supervisor-level software interrupt is typically sent to another
hart instead through an environment call from supervisor mode to machine mode. An operating
system running in S-mode thus invokes a specific SBI function for delivering a software interrupt
to another hart, causing machine-level software at the originating hart to send a machine-level IPI
to the destination hart, where software then sets the supervisor-level software interrupt-pending
bit (SSIP) in CSR mip.

When harts have IMSICs, instead of using the Privileged Architecture’s mechanism for signaling
software interrupts at remote harts, an IPI can be sent to a hart by writing to the destination
hart’s IMSIC, the same as a regular message-signaled interrupt (MSI). In that case, an incoming
IPI appears at the destination hart as an external interrupt routed through the IMSIC, rather than
as a software interrupt as before. However, so long as the same software (e.g. an operating system
or machine monitor) is in control at both endpoints of an IPI, source and destination, there should
be no reason for a destination hart to misinterpret the purpose of an incoming external interrupt
that represents an IPI.

If harts do not have IMSICs, then the method specified by the RISC-V Privileged Architecture
is assumed to be used for IPIs, signaling software interrupts at destination harts. On the other
hand, when harts have IMSICs, the machinery for triggering software interrupts at remote harts
is redundant with the capabilities of the IMSICs, so it is downgraded from a requirement to an
option, useful perhaps only to provide software compatibility across a range of RISC-V systems,
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with and without IMSICs. If a machine implements IMSICs and not the earlier software-interrupt
mechanism, then the bits of CSRs mip and mie for machine-level software interrupts, MSIP and
MSIE, are hardwired to zero in harts.

If a machine implements IMSICs but not the software-interrupt mechanism, the latter can still
be fully emulated at supervisor level for S-mode or VS-mode, by trapping on writes to the special
memory addresses that should signal supervisor-level software interrupts at remote harts. On
such a trap, software can send a higher-level IPI via IMSIC to the destination hart, where the
higher-level software then can set the SSIP bit in sip at the intended privilege level, S or VS.

Similarly, SBI environment calls for sending IPIs can easily continue to be supported without
clients being at all aware of a change in the underlying hardware for delivering IPIs between
harts.

When software sends IPIs by writing MSIs to the IMSICs of other harts, programmers should
consider also the need to execute a FENCE instruction before each store instruction that writes
such an MSI. In the absence of FENCEs, many systems guarantee to preserve the order of a
hart’s loads and stores only to/from individual devices, not among multiple devices, and not at
all for accesses to main memory. With such a system, it must be remembered that each IMSIC
is likely to be considered a separate device among the many. For example, if hart A wants to
notify hart B that it has completed a task involving accesses to some I/O device, hart A may need
to execute a FENCE before sending an MSI to B’s IMSIC, to ensure that all of A’s accesses
to the device have actually completed before the MSI could arrive at B. Similarly, if hart A
stores anything to memory that should be visible at hart B, a FENCE is likely needed before a
subsequent store sending an MSI to B’s IMSIC.



Chapter 8

IOMMU Support for MSIs to Virtual
Machines

The existence of an IOMMU in a system makes it possible for a guest operating system, running
in a virtual machine, to be given direct control of an I/O device with only minimal hypervisor
intervention. A guest OS with direct control of a device will program the device with guest physical
addresses, because that is all the OS knows. When the device then performs memory accesses
using those addresses, an IOMMU is responsible for translating those guest physical addresses
into machine physical addresses, referencing address-translation data structures supplied by the
hypervisor.

To handle MSIs from a device controlled by a guest OS, an IOMMU must be able to redirect those
MSIs to a guest interrupt file in an IMSIC. Systems that do not have IMSICs with guest interrupt
files do not need to implement the facilities described in this chapter.

Because MSIs from devices are simply memory writes, they would naturally be subject to the
same address translation that an IOMMU applies to other memory writes. However, the Advanced
Interrupt Architecture requires that IOMMUs treat MSIs directed to virtual machines specially, in
part to simplify software, and in part to allow optional support for memory-resident interrupt files.

This chapter uses the term IOMMU in a generic sense that encompasses all translation and trans-
action processing services required to virtualize device accesses and is concerned only with how an
IOMMU recognizes and processes MSIs directed to virtual machines. Most other functions and
details of an IOMMU are beyond the scope of this standard, and must be specified elsewhere.

The RISC-V IOMMU Architecture Specification provides a detailed description of the IOMMU
architecture, dividing translation and transaction processing functionality into blocks such as
IOMMU, IO Bridge, etc. and describing how those blocks are integrated into a system.

If a single physical I/O device can be subdivided for control by multiple separate device drivers,
each sub-device is referred to here as one device.
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8.1 Device contexts at an IOMMU

The following assumptions are made about the IOMMUs in a system:

• For each I/O device connected to the system through an IOMMU, software can configure at
the IOMMU a device context, which associates with the device a specific virtual address space
and any other per-device parameters the IOMMU may support. By giving devices each their
own separate device context at an IOMMU, each device can be individually configured for a
separate operating system, which may be a guest OS or the main (host) OS. On every memory
access initiated by a device, hardware indicates to the IOMMU the originating device by some
form of unique device identifier, which the IOMMU uses to locate the appropriate device
context within data structures supplied by software. For PCI, for example, the originating
device may be identified by the unique triple of PCI bus number, device number, and function
number.

• An IOMMU optionally translates the addresses of a device’s memory accesses using address-
translation data structures—typically page tables—specified by software via the correspond-
ing device context. The smallest granularity of address translation implemented by all
IOMMUs is not larger than a 4-KiB page, matching that of standard RISC-V address-
translation page tables. (An IOMMU may in fact employ page tables in the same format
as the page-based address translation defined by the RISC-V Privileged Architecture, but
this is not required.)

The Advanced Interrupt Architecture adds to device contexts these fields, as needed:

• anMSI address mask and address pattern, used together to identify pages in the guest physical
address space that are the destinations of MSIs; and

• the real physical address of anMSI page table for controlling the translation and/or conversion
of MSIs from the device.

The MSI address mask and address pattern are each unsigned integers with the same width as
guest physical page numbers, i.e., 12 bits narrower than the maximum supported width of a guest
physical address. Their use is explained in Section 8.4, “Identification of page addresses of a VM’s
interrupt files.”

A device context’s MSI page table is separate from the usual address-translation data structures
used to translate other memory accesses from the same device. The form and function of MSI page
tables are the subject of most of the rest of this chapter.

A device context is given an independent page table for MSIs for two reasons:
First, hypervisors running under Linux or a similar OS can benefit from separate control

of MSI translations to help simplify the case when virtual harts are migrated from one physical
hart to another. As noted in Section 6.1.2, when a virtual hart’s interrupt files are mapped to
guest interrupt files in the real machine, migration of the virtual hart causes the physical guest
interrupt files underlying those virtual interrupt files to change. However, because on other
systems (not RISC-V) the migration of a virtual hart does not affect the mapping from guest
physical addresses to real physical addresses, the internal functions of Linux that perform this
migration are not set up to modify an IOMMU’s address-translation tables to adjust for the
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changing physical locations of RISC-V virtual interrupt files. Giving a hypervisor control of a
separate MSI translation table at an IOMMU bypasses this limitation. The MSI page table can
be modified at will by the hypervisor and/or by the subsystem that manages interrupts without
coordinating with the many other OS components concerned with regular address translation.

Second, specifying a separate MSI page table facilitates the use of memory-resident interrupt
files (MRIFs), which are introduced in Section 8.3. A dedicated MSI page table can easily support
a special table entry format for MRIFs (Section 8.5.2) that would be entirely foreign and difficult
to retrofit to any other address-translation data structures.

8.2 Translation of addresses for MSIs from devices

To support the delivery of MSIs from I/O devices directly to RISC-V virtual machines without
hypervisor intervention, an IOMMU must be able to translate the guest physical address of an
MSI to the real physical address of an IMSIC’s guest interrupt file in the machine, as illustrated
in Figure 8.1. This address translation is controlled by the MSI page table configured in the
appropriate device context at the IOMMU. Because every interrupt file, real or virtual, occupies
a naturally aligned 4-KiB page of address space, the required address translation is from a virtual
(guest) page address to a physical page address, the same as supported by regular RISC-V page-
based address translation.

Figure 8.1: Translation of a device-sourced MSI that a guest OS intended to go to a (virtual)
IMSIC interrupt file in the OS’s virtual machine. Referencing an MSI page table supplied by the
controlling hypervisor, the IOMMU redirects the MSI to a guest interrupt file of the real machine.

Memory writes from a device are recognized as MSIs by the destination address of the write. If an
IOMMU determines that a 32-bit write is to the location of a (virtual) interrupt file in the relevant
virtual machine, the write is considered an MSI within the VM, else not. The exact formula for
recognizing MSIs is documented in Section 8.4.
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Although the translation of MSIs is controlled by its own separate page table, the fact that MSI
translations are at the same page granularity as regular RISC-V address translations implies that
an address translation cache within an IOMMU requires little modification to also cache MSI
translations. Only on a translation cache miss does the IOMMU need to treat MSIs significantly
differently than other memory accesses from the same device, to choose the correct translation
table and to access and interpret the table properly.

8.3 Memory-resident interrupt files

An IOMMU may optionally support memory-resident interrupt files (MRIFs). If implemented, the
use of memory-resident interrupt files can greatly increase the number of virtual harts that can be
given direct control of one or more physical devices in a system, assuming the rest of the system
can still handle the added load.

Without memory-resident interrupt files, the number of virtual RISC-V harts that can directly
receive MSIs from devices is limited by the total number of guest interrupt files implemented by
all IMSICs in the system, because all MSIs to RISC-V harts must go through IMSICs. For a
single RISC-V hart, the number of guest interrupt files is the GEILEN parameter defined by the
Privileged Architecture, which can be at most 31 for RV32 and 63 for RV64.

With the use of memory-resident interrupt files, on the other hand, the total number of virtual
RISC-V harts able to receive device MSIs is almost unbounded, constrained only by the amount of
real physical memory and the additional processing time needed to handle them. As its name im-
plies, a memory-resident interrupt file is located in memory instead of within an IMSIC. Figure 8.2
depicts how an IOMMU can record an incoming MSI in an MRIF. When properly configured by a
hypervisor, an IOMMU recognizes certain incoming MSIs as intended for a specific virtual interrupt
file, and records each such MSI by setting an interrupt-pending bit stored within the MRIF data
structure in ordinary memory. After each MSI is recorded in an MRIF, the IOMMU also sends a
notice MSI to the hypervisor to inform it that the MRIF contents may have changed.

Figure 8.2: Recording an incoming MSI into a memory-resident interrupt file (MRIF) instead of
sending it to a guest interrupt file as in Figure 8.1.
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While a memory-resident interrupt file provides a place to record MSIs, it cannot interrupt a hart
directly the way an IMSIC’s guest interrupt files can. The notice MSIs that hypervisors receive only
indicate that a virtual hart might need interrupting; a hypervisor is responsible for examining the
MRIF contents each time to determine whether actually to interrupt the virtual hart. Furthermore,
whereas an IMSIC’s guest interrupt file can directly act as a supervisor-level interrupt file for a
virtual hart, keeping a virtual hart’s interrupt file in an MRIF while the virtual hart executes
requires that the hypervisor emulate a supervisor-level interrupt file for the virtual hart, hiding
the underlying MRIF. Depending on how often the virtual hart touches its interrupt file and the
implementation’s level of support for MRIFs, the cost of this emulation may be significant.

Consequently, MRIFs are expected most often to be used for virtual harts that are more-or-less
“swapped out” of a physical hart due to being idle, or nearly so. When a hypervisor determines
that an MSI that landed in an MRIF should wake up a particular virtual hart that was idle, the
virtual hart can be assigned a guest interrupt file in an IMSIC and its interrupt file moved from
the MRIF into this guest interrupt file before the virtual hart is resumed. The process of allocating
a guest interrupt file for the newly wakened virtual hart may of course force the interrupt file of
another virtual hart to be evicted to its own MRIF.

Not all systems need to accommodate large numbers of idle virtual harts. Many batch-processing
servers, for example, strive to keep all virtual worker threads as busy as possible from start to
finish, throttled only by I/O delays and limits on processing resources. In such environments,
support for MRIFs may not be useful, so long as parameter GEILEN is not too small.

An IOMMU can have one of these three levels of support for memory-resident interrupt files:

• no memory-resident interrupt files;
• memory-resident interrupt files without atomic update; or
• memory-resident interrupt files with atomic update.

Memory-resident interrupt files are most efficient when the memory system supports logical atomic
memory operations (AMOs) corresponding to RISC-V instructions AMOAND and AMOOR, for
memory accesses made both from harts and from the IOMMU. The AMOAND and AMOOR
operations are required for atomic update of a memory-resident interrupt file. A reduced level of
support is possible without AMOs, relying solely on basic memory reads and writes.

8.3.1 Format of a memory-resident interrupt file

A memory-resident interrupt file occupies 512 bytes of memory, naturally aligned to a 512-byte
address boundary. The 512 bytes are organized as an array of 32 pairs of 64-bit doublewords, 64
doublewords in all. Each doubleword is in little-endian byte order (even for systems where all harts
are big-endian-only).

Big-endian-configured harts that make use of MRIFs are expected to implement the REV8 byte-
reversal instruction defined by standard RISC-V extension Zbb, or pay the cost of endianness
conversion using a sequence of instructions.

The pairs of doublewords contain the interrupt-pending and interrupt-enable bits for external in-
terrupt identities 1–2047, in this arrangement:
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offset size contents

0x000 8 bytes interrupt-pending bits for (minor) identities 1–63
0x008 8 bytes interrupt-enable bits for identities 1–63
0x010 8 bytes interrupt-pending bits for identities 64–127
0x018 8 bytes interrupt-enable bits for identities 64–127
. . . . . .

0x1F0 8 bytes interrupt-pending bits for identities 1984–2047
0x1F8 8 bytes interrupt-enable bits for identities 1984–2047

In general, the pair of doublewords at address offsets k × 16 and k × 16 + 8 for integer k contain
the interrupt-pending and interrupt-enable bits for external interrupt minor identities in the range
k × 64 to k × 64 + 63. For identity i in this range, bit (i mod 64) of the first (even) doubleword is
the interrupt-pending bit, and the same bit of the second (odd) doubleword is the interrupt-enable
bit.

The interrupt-pending and interrupt-enable bits are stored interleaved by doublewords within an
MRIF to facilitate the possibility of an IOMMU examining the relevant enable bit to determine
whether to send a notice MSI after updating a pending bit, rather than the default behavior of
always sending a notice MSI after an update without regard for the interrupt-enable bits. The
memory arrangement matters only when MRIFs are supported without atomic update.

Bit 0 of the first doubleword of an MRIF stores a faux interrupt-pending bit for nonexistent
interrupt 0. If a write from an I/O device appears to be an MSI that should be stored in an MRIF,
yet the data to write (the interrupt identity) is zero, the IOMMU acts as though zero were a valid
interrupt identity, setting bit 0 of the target MRIF’s first doubleword and sending a notice MSI as
usual.

All MRIFs are the size to accommodate 2047 valid interrupt identities, the maximum allowed for
an IMSIC interrupt file. If a system’s actual IMSICs have interrupt files that implement only N
interrupt identities, N < 2047, then the contents of MRIFs for identities greater than N may be
ignored by software. IOMMUs, however, treat every MRIF as though all interrupt identities in the
range 0–2047 are valid, even as software ignores invalid identity 0 and all identities greater than N .

There is no need to specify to an IOMMU a desired size N for an MRIF smaller than 2047
valid interrupt identities. The only use an IOMMU would make of this information would be
to discard any MSIs indicating an interrupt identity greater than N . If devices are properly
configured by software, such errant MSIs should not occur; but even if they do, it is just as
effective for software to ignore spurious interrupt identities after they have been recorded in an
MRIF as for an IOMMU to discard them before recording them in the MRIF.

It is likewise unnecessary for IOMMUs to check for and discard MSIs indicating an invalid
interrupt identity of zero.

8.3.2 Recording of incoming MSIs to memory-resident interrupt files

The data component of an MSI write specifies the interrupt identity to raise in the destination
interrupt file. (Recall Section 3.2.) This data may be in little-endian or big-endian byte order. If
an IOMMU supports memory-resident interrupt files, it can store to an MRIF MSIs of the same
endianness that the machine’s IMSICs accept. All IMSIC interrupt files are required to accept
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MSIs in little-endian byte order written to memory-mapped register seteipnum le (Section 3.5).
IMSIC interrupt files may also accept MSIs in big-endian byte order if register seteipnum be is
implemented alongside seteipnum le.

If the interrupt identity indicated by an MSI’s data (when interpreted in the correct byte order) is
in the range 0–2047, an IOMMU stores the MSI to an MRIF by setting to one the interrupt-pending
bit in the MRIF for that identity. If atomic update is supported for MRIFs, the pending bit is set
using an AMOOR operation, else it is set using a non-atomic read-modify-write sequence. After
the interrupt-pending bit is set in the MRIF, the IOMMU sends the notice MSI that software has
configured for the MRIF.

The exact process of storing an MSI to an MRIF is specified more precisely in Section 8.5.2, which
covers MSI page table entries configured in MRIF mode.

It is an open question whether an IOMMU might optionally examine the matching interrupt-
enable bit within a destination MRIF to decide whether to send a notice MSI after setting an
interrupt-pending bit. Currently, an IOMMU is required always to send a notice MSI after
storing an MSI to an MRIF, even when the corresponding enable bit for the interrupt identity
is zero.

8.3.3 Use of memory-resident interrupt files with atomic update

To make use of a memory-resident interrupt file with support for atomic update, software must
have memory locations to save an IMSIC interrupt file’s eidelivery and eithreshold registers,
in addition to the MRIF structure itself from Section 8.3.1.

Moving a virtual hart’s interrupt file from an IMSIC into an MRIF involves these steps:

1. Prepare the MRIF by zeroing all of its interrupt-pending bits (the even doublewords) and by
copying the IMSIC interrupt file’s eie array to the MRIF’s interrupt-enable bits (the odd
doublewords).

2. Save to memory the existing values of the IMSIC interrupt file’s registers eidelivery and
eithreshold, and set eidelivery = 0.

3. Modify all relevant translation tables at IOMMUs so that MSIs for this virtual interrupt file
are now stored in the MRIF. If necessary, synchronize with all IOMMUs to ensure that no
straggler MSIs will arrive at the IMSIC interrupt file after this step.

4. Logically OR the contents of the IMSIC interrupt file’s eip array into the interrupt-pending
bits of the MRIF, using AMOOR operations.

Once this sequence is complete, the IMSIC interrupt file is no longer in use.

Each time a notice MSI arrives indicating that an MSI has been stored in the MRIF, the controlling
hypervisor should scan the MRIF’s interrupt-pending and interrupt-enable bits to determine if any
enabled interrupt is now both pending and enabled and thus should interrupt the virtual hart.
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With atomic update of MRIFs, a virtual hart may continue executing with its interrupt file con-
tained in an MRIF, so long as the hypervisor emulates for the virtual hart a proper IMSIC inter-
rupt file to hide the underlying MRIF. Hypervisor software can safely set and clear the interrupt-
pending and interrupt-enable bits of the MRIF using AMOOR and AMOAND operations, even as
an IOMMU may be storing incoming MSIs into the same MRIF.

If an IOMMU is ever configured to examine an MRIF’s interrupt-enable bits to decide whether
to send notice MSIs, then modifying those enable bits will generally require coordination with
the IOMMU. But so long as IOMMUs ignore the interrupt-enable bits as is currently assumed,
the bits can be changed by software without risk.

To move the same interrupt file from the MRIF back to an IMSIC:

1. At the new IMSIC interrupt file, set eidelivery = 0, and zero the eip array.

2. Modify all relevant translation tables at IOMMUs so that MSIs for this virtual interrupt file
are now sent to the IMSIC interrupt file. If necessary, synchronize with all IOMMUs to ensure
that no straggler MSIs will be stored in the MRIF after this step.

3. Logically OR the interrupt-pending bits from the MRIF into the IMSIC interrupt file, using
instruction CSRS to write to the eip array. Also, copy the interrupt-enable bits from the
MRIF to the IMSIC interrupt file’s eie array.

4. Load the IMSIC interrupt file’s registers eithreshold and eidelivery with the values that
were earlier saved.

8.3.4 Use of memory-resident interrupt files without atomic update

Without support for atomic update, the use of memory-resident interrupt files is similar to the
atomic-update case of the previous subsection, but with some added complexities.

First, if the I/O devices that a virtual hart controls are behind multiple IOMMUs, then multiple
MRIF structures are needed, one per IOMMU, not just a single MRIF structure. Furthermore,
in addition to locations for storing eidelivery and eithreshold, software needs a place for a
complete copy of the interrupt file’s implemented eip array, apart from the MRIFs. While a
virtual interrupt file is in memory, its interrupt-pending bits will be split across all the MRIFs and
the saved eip array. The interrupt-enable bits may exist only in the MRIFs.

To move a virtual hart’s interrupt file from an IMSIC into memory, with one MRIF per IOMMU:

1. Prepare all MRIFs by zeroing their interrupt-pending bits (the even doublewords) and by
copying the IMSIC interrupt file’s eie array to the MRIFs’ interrupt-enable bits (the odd
doublewords).

2. Save to memory the existing values of the IMSIC interrupt file’s registers eidelivery and
eithreshold, and set eidelivery = 0.

3. At each IOMMU, modify all relevant translation tables so that MSIs for this virtual interrupt
file are now stored in the individual MRIF matched to the IOMMU. If necessary, synchronize
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with all IOMMUs to ensure that no straggler MSIs will arrive at the IMSIC interrupt file
after this step.

4. Dump the IMSIC interrupt file’s eip array to its separate location outside the MRIFs.

Once this sequence is complete, the IMSIC interrupt file is no longer in use.

While a virtual hart’s interrupt file remains in memory, an interrupt identity’s true pending bit is
the logical OR of its bit in all MRIFs and its bit in the saved eip array. All pending bits in the
MRIFs start as zeros, but interrupts may become pending there as MSIs for this virtual hart arrive
at IOMMUs and are stored in the corresponding MRIFs.

Without atomic update of MRIFs, an interrupt-pending bit is not easily cleared in an MRIF.
(Clearing a single pending bit in one MRIF requires that a new MRIF be allocated and initialized
and the corresponding IOMMU reconfigured to store MSIs into the new MRIF.) For this reason,
it may or may not be practical to have a virtual hart execute while keeping one of its interrupt
files in memory. When an MRIF records an interrupt that should wake a virtual hart, the simplest
strategy is to always move the interrupt file back into an IMSIC’s guest interrupt file before resuming
execution of the virtual hart.

To transfer an interrupt file from memory back to an IMSIC:

1. At the new IMSIC interrupt file, set eidelivery = 0, and zero the eip array.

2. Modify all relevant translation tables at IOMMUs so that MSIs for this virtual interrupt file
are now sent to the IMSIC interrupt file. If necessary, synchronize with all IOMMUs to ensure
that no straggler MSIs will be stored in MRIFs after this step.

3. Merge by bitwise logical OR the interrupt-pending bits of all MRIFs and the saved eip array,
and logically OR these merged bits into the IMSIC interrupt file, using instruction CSRS to
write to the eip array. Also, copy the interrupt-enable bits from one of the MRIFs to the
IMSIC interrupt file’s eie array.

4. Load the IMSIC interrupt file’s registers eithreshold and eidelivery with the values that
were earlier saved.

8.3.5 Allocation of guest interrupt files for receiving notice MSIs

The processing a hypervisor does in response to notice MSIs can be minimized by assigning a
separate interrupt identity for each MRIF, so the identity encoded in a notice MSI always indicates
which one MRIF may have changed. However, if there are very many MRIFs (potentially in the
thousands), a hypervisor may run short of interrupt identities within the supervisor-level interrupt
files available in IMSICs. In that case, the hypervisor can increase its supply of interrupt identities
by allocating one or more of the IMSICs’ guest interrupt files to itself for the purpose of receiving
notice MSIs.

Although guest interrupt files exist primarily to act as supervisor-level interrupt files for virtual
harts, the IMSIC hardware does not police exactly how they are used by software.
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8.4 Identification of page addresses of a VM’s interrupt files

When an I/O device is configured directly by a guest operating system, MSIs from the device
are expected to be targeted to virtual IMSICs within the guest OS’s virtual machine, using guest
physical addresses that are inappropriate and unsafe for the real machine. An IOMMU must
recognize certain incoming writes from such devices as MSIs and convert them as needed for the
real machine. (Recall Figure 8.1.)

MSIs originating from a single device that require conversion are expected to have been configured
at the device by a single guest OS running within one RISC-V virtual machine. Assuming the
VM itself conforms to the Advanced Interrupt Architecture, MSIs are sent to virtual harts within
the VM by writing to the memory-mapped registers of the interrupt files of virtual IMSICs. Each
of these virtual interrupt files occupies a separate 4-KiB page in the VM’s guest physical address
space, the same as real interrupt files do in a real machine’s physical address space. A write to a
guest physical address can thus be recognized as an MSI to a virtual hart if the write is to a page
occupied by an interrupt file of a virtual IMSIC within the VM.

The MSI address mask and address pattern specified in a device context (Section 8.1) are used to
identify the 4-KiB pages of virtual interrupt files in the guest physical address space of the relevant
VM. An incoming 32-bit write made by a device is recognized as an MSI write to a virtual interrupt
file if the destination guest physical page matches the supplied address pattern in all bit positions
that are zeros in the supplied address mask. In detail, a memory access to guest physical address A
is an access to a virtual interrupt file’s memory-mapped page if(

(A >> 12) & ∼address mask
)
= (address pattern & ∼address mask)

where >> 12 represents shifting right by 12 bits, an ampersand (&) represents bitwise logical AND,
and “∼address mask” is the bitwise logical complement of the address mask.

When a memory access is found to be to a virtual interrupt file, an interrupt file number is extracted
from the original guest physical address as

interrupt file number = extract(A >> 12, address mask)

Here, extract(x, y) is a “bit extract” that discards all bits from x whose matching bits in the
same positions in the mask y are zeros, and packs the remaining bits from x contiguously at the
least-significant end of the result, keeping the same bit order as x and filling any other bits at the
most-significant end of the result with zeros. For example, if the bits of x and y are

x = a b c d e f g h
y = 1 0 1 0 0 1 1 0

then the value of extract(x, y) has bits 0 0 0 0 a c f g.
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8.5 MSI page tables

When an IOMMU determines that a memory access is to a virtual interrupt file as specified in the
previous section, the access is translated or converted by consulting the MSI page table configured
for the device, instead of using the regular translation data structures that apply to all other
memory accesses from the same device.

An MSI page table is a flat array of MSI page table entries (MSI PTEs), each 16 bytes. MSI page
tables have no multi-level hierarchy like regular RISC-V page tables do. Rather, every MSI PTE
is a leaf entry specifying the translation or conversion of accesses made to a particular 4-KiB guest
physical page that a virtual interrupt file occupies (or may occupy) in the relevant virtual machine.
To select an individual MSI PTE from an MSI page table, the PTE array is indexed by the interrupt
file number extracted from the destination guest physical address of the incoming memory access
by the formula of the previous section. Each MSI PTE may specify either the address of a real
guest interrupt file that substitutes for the targeted virtual interrupt file (as in Figure 8.1), or a
memory-resident interrupt file in which to store incoming MSIs for the virtual interrupt file (as in
Figure 8.2).

The number of entries in an MSI page table is 2k where k is the number of bits that are ones in
the MSI address mask used to extract the interrupt file number from the destination guest physical
address. If an MSI page table has 256 or fewer entries, the start of the table is aligned to a 4-KiB
page address in real physical memory. If an MSI page table has 2k > 256 entries, the table must
be naturally aligned to a 2k × 16-byte address boundary. If an MSI page table is not aligned as
required, all entries in the table appear to an IOMMU as unspecified, and any address an IOMMU
may compute and use for reading an individual MSI PTE from the table is also unspecified.

Every 16-byte MSI PTE is interpreted as two 64-bit doublewords. If an IOMMU also references
standard RISC-V page tables, defined by the RISC-V Privileged Architecture, for regular ad-
dress translation, then the byte order for each of the two doublewords in memory, little-endian or
big-endian, should be the same as the endianness of the regular RISC-V page tables configured
for the same device context. Otherwise, the endianness of the doublewords of an MSI PTE is
implementation-defined.

Bit 0 of the first doubleword of an MSI PTE is field V (Valid). When V = 0, the PTE is invalid,
and all other bits of both doublewords are ignored by an IOMMU, making them free for software
to use.

If V = 1, bit 63 of the first doubleword is field C (Custom), designated for custom use. If an MSI
PTE has V = 1 and C = 1, interpretation of the rest of the PTE is implementation-defined.

If V = 1 and the custom-use bit C = 0, then bits 2:1 of the first doubleword contain field M (Mode).
If M = 3, the MSI PTE specifies basic translate mode for accesses to the page, and if M = 1, it
specifies MRIF mode. Values of 0 and 2 for M are reserved. The interpretation of an MSI PTE for
each of the two defined modes is detailed further in the next two subsections.
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8.5.1 MSI PTE, basic translate mode

When an MSI PTE has fields V = 1, C = 0, and M = 3 (basic translate mode), the PTE’s complete
format is:

First doubleword: bit 63 C, = 0
bits 53:10 PPN
bits 2:1 M, = 3
bit 0 V, = 1

Second doubleword: ignored

All other bits of the first doubleword are reserved and must be set to zeros by software. The second
doubleword is ignored by an IOMMU so is free for software to use.

A memory access within the page covered by the MSI PTE is translated by replacing the access’s
original address bits 12 and above (the guest physical page number) with field PPN (Physical
Page Number) from the PTE, while retaining the original address bits 11:0 (the page offset). This
translated address is either zero-extended or clipped at the upper end as needed to make it the
width of a real physical address for the machine. The original memory access from the device is
then passed onward to the memory system with the new address.

An MSI PTE in basic translate mode allows a hypervisor to route an MSI write intended for a
virtual interrupt file to go instead to a guest interrupt file of a real IMSIC in the machine.

An IOMMU that also employs standard RISC-V page tables for regular address translation can
maximize the overlap between the handling of MSI PTEs and regular RISC-V leaf PTEs as
follows:

For RV64, the first doubleword of an MSI PTE in basic translate mode has the same encoding
as a regular RISC-V leaf PTE for Sv39, Sv48, Sv57, Sv39x4, Sv48x4, or Sv57x4 page-based
address translation, with PTE fields D, A, G, U, and X all zeros and W = R = 1. Hence,
the MSI PTE’s first doubleword appears the same as a regular PTE that grants read and write
permission (R = W = 1) but not execute permissions (X = 0). This same-encoded regular PTE
would translate an MSI write the same as the actual MSI PTE, except that what would be the
PTE’s accessed (A), dirty (D), and user (U) bits are all zeros. An IOMMU needs to treat only
these three bits differently for an MSI PTE versus a regular RV64 leaf PTE.

The address computation used to select a PTE from a regular RISC-V page table must
be modified to select an MSI PTE’s first doubleword from an MSI page table. However, the
extraction of an interrupt file number from a guest physical address to obtain the index for
accessing the MSI page table already creates an unavoidable difference in PTE addressing.

For RV32, the lower 32-bit word of an MSI PTE’s first doubleword has the same format as
a leaf PTE for Sv32 or Sv32x4 page-based address translation, except again for what would be
PTE bits A, D, and U, which must be treated differently.
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8.5.2 MSI PTE, MRIF mode

If memory-resident interrupt files are supported and an MSI PTE has fields V = 1, C = 0, and
M = 1 (MRIF mode), the PTE’s complete format is:

First doubleword: bit 63 C, = 0
bits 53:7 MRIF Address[55:9]
bits 2:1 M, = 1
bit 0 V, = 1

Second doubleword: bit 60 NID[10]
bits 53:10 NPPN
bits 9:0 NID[9:0]

All other PTE bits are reserved and must be set to zeros by software.

The PTE’s MRIF Address field provides bits 55:9 of the physical address of a memory-resident
interrupt file in which to store incoming MSIs, referred to as the destination MRIF. As every
memory-resident interrupt file is naturally aligned to a 512-byte address boundary, bits 8:0 of the
destination MRIF’s address must be zero and are not specified in the PTE.

Field NPPN (Notice Physical Page Number) and the two NID (Notice Identifier) fields together
specify a destination and value for a notice MSI that is sent after each time the destination MRIF
is updated as a result of consulting this PTE to store an incoming MSI.

Typically, NPPN will be the page address of an IMSIC’s interrupt file in the real machine, and
NID will be the interrupt identity to make pending in that interrupt file to indicate that the
destination MRIF may have changed. However, NPPN is not required to be a valid interrupt
file address, and an IOMMU must not attempt to restrict it to only such addresses. Any page
address must be accepted for NPPN.

Memory accesses by I/O devices to addresses within a page covered by an MRIF-mode PTE are
handled by the IOMMU instead of being passed through to the memory system. If a memory
access, read or write, is not for 32 bits of data, or if the access address is not aligned to a 4-byte
boundary (including accesses that straddle the page boundary), the access should be aborted as
unsupported. For a naturally aligned 32-bit read, the IOMMU should preferably return zero as
the read value but may alternatively abort the access. A naturally aligned 32-bit write is either
interpreted as an MSI, resulting in an update of the destination MRIF, or is discarded.

When the IMSIC interrupt files in the system implement memory-mapped register seteipnum be for
receiving MSIs in big-endian byte order (Section 3.5), then an IOMMU must be able to store MSIs
in both little-endian and big-endian byte orders to the destination MRIF. If the IMSIC interrupt
files in the system do not implement register seteipnum be, an IOMMU should ordinarily store
only little-endian MSIs to the destination MRIF. The data of an incoming MSI is assumed to be
in little-endian byte order if bit 2 of the destination address is zero, and in big-endian byte order
if bit 2 of the destination address is one.

If a naturally aligned 32-bit write is to guest physical address A within a page covered by an MRIF-
mode PTE, and if the write data is D when interpreted in the byte order indicated by bit 2 of A,
then the write is processed as follows: If either A[11:3] or D[31:11] is not zero, or if bit 2 of A
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is one and big-endian MSIs are not supported, then the incoming write is accepted but discarded.
Else, the original incoming write is recognized as an MSI and is replaced by one of the following
memory accesses, setting the interrupt-pending bit that corresponds to the interrupt identity D in
the destination MRIF to one:

• an atomic AMOOR operation, if atomic updates are supported; or
• a non-atomic read-modify-write sequence, if atomic updates are not supported.

Once the MRIF update operation is visible to all agents in the system, the 11-bit NID value is
zero-extended to 32 bits, and this value is written to the address NPPN << 12 (i.e., physical page
number NPPN, page offset zero) in little-endian byte order.

While IOMMUs are expected typically to cache MSI PTEs that are configured in basic translate
mode (M = 3), they might not cache PTEs configured in MRIF mode (M = 1). Two reasons
together justify not caching MSI PTEs in MRIF mode: First, the information and actions
required to store an MSI to an MRIF are far different than normal address translation; and
second, by their nature, MSIs to MRIFs should occur less frequently. Hence, an IOMMU might
perform MRIF-mode processing solely as an extension of cache-miss page table walks, leaving
its address translation cache oblivious to MRIF-mode MSI PTEs.
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