
Double Trap Extensions
Version v1.0, 2024-08-23: Ratified

Table of Contents
Preamble . 1
Copyright and license information . 1
Contributors . 1
1. Double Trap. 2

1.1. Ssdbltrp Operational Details . 3
1.2. Smdbltrp Operational Details . 5

Bibliography . 7

Preamble

This document is in the Ratified state

No changes are allowed. Any desired or needed changes can be the subject of a follow-on
new extension. Ratified extensions are never revised

Copyright and license information
This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-
BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2024 by RISC-V International.

Contributors
This RISC-V specification has been contributed to directly or indirectly by:

Allen Baum, Andrew Waterman, Clément Léger, Deepak Gupta, Earl Killian, Greg Favor, John Hauser,
Joshua Scheid, Paul Donahue, Tim Newsome, and Ved Shanbhogue

Preamble | Page 1

Double Trap Extensions | © RISC-V

http://riscv.org/spec-state
https://creativecommons.org/licenses/by/4.0/

Chapter 1. Double Trap
A double trap typically arises during a sensitive phase in trap handling operations — when an
exception or interrupt occurs while the trap handler (the component responsible for managing these
events) is in a non-reentrant state. This non-reentrancy usually occurs in the early phase of trap
handling, wherein the trap handler has not yet preserved the necessary state to handle and resume
from the trap. The occurrence of a trap during this phase can lead to an overwrite of critical state
information, resulting in the loss of data needed to recover from the initial trap. The trap that caused
this critical error condition is henceforth called the unexpected trap. Trap handlers are designed to
neither enable interrupts nor cause exceptions during this phase of handling. However, managing
Hardware-Error exceptions [1], which may occur unpredictably, presents significant challenges in trap
handler implementation due to the potential risk of a double trap.

The ISA Double Trap Extensions are devised to tackle situations where conventional fault handling
mechanisms fall short. Although a double trap generally is an irrecoverable condition and signals a
critical error, these extensions introduce strategies to manage such errors across privilege levels.

The following ISA extensions are defined to enhance fault handling capabilities:

• Ssdbltrp: This extension is designed to address double trap at privilege modes lower than M. It
enables HS-mode to invoke a critical error handler in a virtual machine on a double trap in VS-
mode. It also allows M-mode to invoke a critical error handler in the OS/Hypervisor on a double
trap in S/HS-mode. The Ssdbltrp extension is specified in Section 1.1.

• Smdbltrp: This extension addresses a double trap in M-mode. When the Smrnmi extension [2] is
implemented, it enables invocation of the RNMI handler on a double trap in M-mode to handle
the critical error. If the Smrnmi extension is not implemented or if a double trap occurs during the
RNMI handler’s execution, this extension helps transition the hart to a critical error state and
enables signaling the critical error to the platform. To improve error diagnosis and resolution, this
extension supports debugging harts in a critical error state. The Smdbltrp extension is specified in
Section 1.2.

Chapter 1. Double Trap | Page 2

Double Trap Extensions | © RISC-V

1.1. Ssdbltrp Operational Details
The Ssdbltrp adds an S-mode-disable-trap (SDT) field (bit 24) to the sstatus CSR and a double-trap-
enable (DTE) field (bit 59) to the menvcfg CSR. If the H-extension is implemented, Ssdbltrp also adds a
SDT field (bit 24) to the vsstatus CSR and a DTE field (bit 59) to the henvcfg CSR. The Ssdbltrap
extension requires the implementation of the mtval2 CSR. An Exception Code (value = 16) called the
double trap is introduced. The bit 16 of the medeleg and the hedeleg CSRs are read-only zero as the
double trap is not delegatable.

When menvcfg.DTE is zero, the implementation behaves as though Ssdbltrp is not implemented.
When Ssdbltrp is not implemented sstatus.SDT, vsstatus.SDT, and henvcfg.DTE bits are read-only
zero. When henvcfg.DTE is zero, the implementation behaves as though Ssdbltrp is not implemented
for VS-mode and the vsstatus.SDT bit is read-only zero.

When the SDT bit is set to 1 by an explicit CSR write, the SIE (Supervisor Interrupt Enable) bit is
cleared to 0. This clearing occurs regardless of the value written, if any, to the SIE bit by the same
write. The SIE bit can only be set to 1 by an explicit CSR write if the SDT bit is being set to 0 by the
same write or is already 0.

When a trap is to be taken into VS- or S-mode, if the SDT bit is currently 0, it is then set to 1, and the
trap is delivered as expected. However, if SDT is already set to 1, then this is an unexpected trap. In the
event of an unexpected trap, a double-trap exception trap is delivered into M-mode. To deliver this
trap, the hart writes registers, except mcause and mtval2, with the same information that the
unexpected trap would have written if it was taken into M-mode. The mtval2 register is then set to what
would be otherwise written into the mcause register by the unexpected trap. The mcause register is set to
16, the double-trap exception code.

After a trap handler has saved the state, such as scause, sepc, and stval, needed for
resuming from the trap and is reentrant, it should clear the SDT bit. Resetting the SDT by
an SRET enables the trap handler to detect a double trap that may occur during the tail
phase, where it restores critical state to return from a trap.

The consequence of this specification is that if a critical error condition was caused by a
guest page-fault, then the GPA will not be available in mtval2 when the double trap is
delivered to M-mode. This condition arises if the HS-mode invokes a hypervisor virtual-
machine load or store instruction when SDT is 1 and the instruction raises a guest page-
fault. The use of such an instruction in this phase of trap handling is not common.
However, not recording the GPA is considered benign because, if required, it can still be
obtained — albeit with added effort — through the process of walking the page tables.

For a double trap that originates in VS-mode, M-mode should redirect the exception to
HS-mode by copying the values of M-mode CSRs updated by the trap to HS-mode CSRs
and should use an MRET to resume execution at the address in stvec. Supervisor Software
Events (SSE) [3], an extension to the SBI, provide a mechanism for supervisor software to
register and service system events emanating from an SBI implementation, such as
firmware or a hypervisor. In the event of a double trap, HS-mode and M-mode can utilize
the SSE mechanism to invoke a critical-error handler in VS-mode or S/HS-mode,
respectively. Additionally, the implementation of an SSE protocol can be considered as an
optional measure to aid in the recovery from such critical errors.

In S-mode, the SRET instruction sets sstatus.SDT to 0, and if the new privilege mode is VU, it also sets
vsstatus.SDT to 0. However, in VS-mode, only vsstatus.SDT is set to to 0.

1.1. Ssdbltrp Operational Details | Page 3

Double Trap Extensions | © RISC-V

The MRET instructions sets sstatus.SDT to 0, if the new privilege mode is U, VS, or VU. Additionally, if
it is VU, then vsstatus.SDT is also set to 0.

When a hart resumes from Debug Mode, if the new privilege mode is U, VS, or VU, then sstatus.SDT
is set to 0. Additionally, if it is VU, then vsstatus.SDT is also set to 0.

1.1. Ssdbltrp Operational Details | Page 4

Double Trap Extensions | © RISC-V

1.2. Smdbltrp Operational Details
The Smdbltrp extension adds an M-mode-disable-trap (MDT) field (bit 42) to the mstatus CSR for
RV64. For RV32, this field is located in the mstatush CSR at bit position 10. Upon reset, the MDT field is
set to 1. An Exception Code (value = 16) called the double trap is introduced.

When the MDT bit is set to 1 by an explicit CSR write, the MIE (Machine Interrupt Enable) bit is cleared
to 0. For RV64, this clearing occurs regardless of the value written, if any, to the MIE bit by the same
write. The MIE bit can only be set to 1 by an explicit CSR write if the MDT bit is already 0 or, for RV64, is
being set to 0 by the same write (For RV32, the MDT bit is in mstatush and the MIE bit in mstatus
register).

When a trap is to be taken into M-mode, if the MDT bit is currently 0, it is then set to 1, and the trap is
delivered as expected. However, if MDT is already set to 1, then this is an unexpected trap. When the
Smrnmi extension is implemented, a trap caused by an RNMI is not considered an unexpected trap
irrespective of the state of the MDT bit. A trap caused by an RNMI does not set the MDT bit. However, a
trap that occurs when executing in M-mode with mnstatus.NMIE set to 0 is an unexpected trap. The
unexpected trap is handled as follows:

• When the Smrnmi extension is implemented and mnstatus.NMIE is 1, the hart traps to the RNMI
handler. To deliver this trap, the mnepc and mncause registers are written with the values that the
unexpected trap would have written to the mepc and mcause registers respectively. The privilege
mode information fields in the mnstatus register are written to indicate M-mode and its NMIE field
is set to 0.

The consequence of this specification is that on occurrence of double trap, the RNMI
handler is not provided with information that a trap reports in the mtval and the mtval2
registers. This information, if needed, can be obtained by the RNMI handler by decoding
the instruction at the address in mnepc and examining its source register contents.

• When the Smrnmi extension is not implemented, or if the Smrnmi extension is implemented and
mnstatus.NMIE is 0, the hart enters a critical-error state without updating any architectural state,
including the pc. This state involves ceasing execution, disabling all interrupts (including NMIs),
and asserting a critical-error signal to the platform.

The actions performed by the platform when a hart asserts a critical-error signal are
platform-specific. The range of possible actions include restarting the affected hart or
restarting the entire platform, among others.

The MRET and SRET instructions, when executed in M-mode, set the MDT bit to 0. If the new privilege
mode is U, VS, or VU, then sstatus.SDT is also set to 0. Additionally, if it is VU, then vsstatus.SDT is
also set to 0.

The Smdbltrp extension introduces a read-write critical-error-trigger (cetrig) field (bit 19) to the dcsr
CSR [4]. When cetrig is set to 1, a hart in a critical error state enters Debug Mode instead of asserting
the critical-error signal to the platform. Upon such entry into Debug Mode, the cause field of dcsr is
set to 7, and its extcause field is set to 0, indicating a critical error triggered the Debug Mode entry.
This cause has the highest priority among all reasons for entering Debug Mode. Resuming from Debug
Mode following an entry from the critical error state returns the hart to the critical error state.

When a hart resumes from Debug Mode, if the new privilege mode is not M, then the MDT bit is set to 0.
If it is U, VS, or VU, then sstatus.SDT is also set to 0. Additionally, if it is VU, then vsstatus.SDT is
also set to 0.

1.2. Smdbltrp Operational Details | Page 5

Double Trap Extensions | © RISC-V

The MNRET instruction sets the MDT bit to 0 if the new privilege mode is not M. If it is U, VS, or VU, then
sstatus.SDT is also set to 0. Additionally, if it is VU, then vsstatus.SDT is also set to 0.

The implication of this specification is that resuming from Debug Mode, following an entry
due to a critical error will either result in an immediate re-entry into Debug Mode due to
the critical error if cetrig is set to 1, or it will cause the critical-error signal to be asserted
to the platform. The debugger can resume with cetrig set to 0 to allow the platform-
defined actions on critical-error signal to occur. Other possible actions include initiating a
hart or platform reset using the Debug Module reset control.

1.2. Smdbltrp Operational Details | Page 6

Double Trap Extensions | © RISC-V

Bibliography
[1] “RISC-V Instruction Set Manual, Volume II: Privileged Architecture.” [Online]. Available:
github.com/riscv/riscv-isa-manual.

[2] “‘Smrnmi’ Standard Extension for Resumable Non-Maskable Interrupts.” [Online]. Available:
github.com/riscv/riscv-isa-manual/blob/main/src/rnmi.adoc.

[3] “SBI: Supervisor Software Events Extension.” [Online]. Available: github.com/riscv-non-isa/riscv-
sbi-doc.

[4] “The RISC-V Debug Specification.” [Online]. Available: github.com/riscv/riscv-debug-spec.

Bibliography | Page 7

Double Trap Extensions | © RISC-V

https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual/blob/main/src/rnmi.adoc
https://github.com/riscv-non-isa/riscv-sbi-doc
https://github.com/riscv-non-isa/riscv-sbi-doc
https://github.com/riscv/riscv-debug-spec

	Double Trap Extensions
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Chapter 1. Double Trap
	1.1. Ssdbltrp Operational Details
	1.2. Smdbltrp Operational Details

	Bibliography

