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Chapter 1. Introduction to N-Trace

This RISC-V N-Trace (Nexus based trace) Specification is based on the well-established IEEE-5001
Nexus Standard tailored to support the trace of RISC-V ISA cores, harts and SoC/MCU designs.

It serves multiple audiences:

• N-Trace encoder logic/IP developers.

• Validation teams testing of N-Trace implementation.

• Debug and trace tools developers.

• Software programmers utilizing the trace for debugging and performance tuning of RISC-V-based
systems.

This specification, together with the RISC-V Trace Control Interface Specification and RISC-V Trace
Connectors Specification provide a complete, end-to-end, trace system for RISC-V based SoC.

A trace ingress port, which serves as the connection between the RISC-V hart and the trace system, is
defined in the ratified Efficient Trace for RISC-V Specification. This port enables the RISC-V hart to
communicate execution information to the trace system. The N-Trace encoder is responsible for
encoding an execution flow into a stream of trace messages. This document describes an appropriate
selection of N-Trace messages compatible with the original IEEE-5001 Nexus Standard.

The primary objective was to define the program flow trace messages. Extensions have been
introduced to enable better trace compression. Future versions may include IEEE-5001 Nexus-
compatible data and bus trace.

The registers controlling the N-trace decoder are defined by the RISC-V Trace Control Interface
Specification. This specification is shared with E-trace, so not all registers and register fields are
supported by N-trace.

Trace connectors defined by IEEE-5001 Nexus Standard were debug oriented, so could not be directly
applied. Instead, industry standard MIPI-compliant connectors are defined in RISC-V Trace
Connectors Specification. These connectors are pure extensions of debug-only, MIPI-compliant
connectors defined by ratified RISC-V Debug Specification.

1.1. Related Specifications

This document provides reference to separated documents developed together with this RISC-V N-
Trace Specification:

• RISC-V Trace Control Interface Specification - Defines RISC-V trace control interface.

◦ This document is intended to be shared with ratified Efficient Trace for RISC-V Specification.

• RISC-V Trace Connectors Specification - Defines RISC-V trace connectors (for external trace
probes).

Ratified Efficient Trace for RISC-V Specification defines RISC-V Trace Ingress Port signals (chapter
4 Instruction Trace Interface). At the moment of this writing this is version 2.0 (ratified May 5-th
2022).


In the future trace ingress port may be defined in separated document - in such a a case
reference to E-Trace specification will not be necessary.

1.1. Related Specifications | Page 5
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1.2. Trace Encoder Interfaces

The diagram below shows one possible implementation with only a single RISC-V hart. In a system
with multiple cores/harts the Trace Ingress Port, Trace Encoder Control and Trace Encoder blocks
should be replicated for each hart. The main Trace Control Layer controlling other (shared)
components in the trace system is not replicated.

Figure 1. Trace Encoder Interfaces

 Placement of the Trace Encoder and Trace Control Layer are implementation dependent.

1.3. Definitions and Terminology

Table 1. Terms Used In This Specification

Term Definition

Message N-Trace messages are sequences of bytes. First byte of every message includes the TCODE field,
which defines the type of information carried in the message and its format. When messages are
transmitted or stored, a protocol, described in N-Trace Transmission Protocol chapter, defines the
start and the end of each message.

Field A field is a distinct piece of the information contained within a message, and messages may contain
one or more fields (in addition to the first TCODE field). Fields can be either of fixed-length or
variable-length. Several fields may be packed into single byte and single field may span multiple
bytes. Definitions of all fields can be found in Fields in Messages chapter.

Variable-length Field Specifying that a field is variable-length (Var used as field size definition) means that the message
must contain the field, but the field’s size may vary from a minimum of 1 bit. When messages are
transmitted or stored, variable-length fields must end on a byte boundary. If necessary, they must
zero-fill bit positions beyond the highest order bit of the variable-length data. Because variable-
length fields may be of different lengths in messages of the same type, when messages are
transmitted or stored, a protocol, described in N-Trace Transmission Protocol chapter, defines the
end of each variable-length field.

Configurable Field Configurable field (Cfg used as field size) means that existence and size of this field depends on some
configuration setting. See N-Trace Specific Trace Controls chapter for details.

N-Trace IEEE-5001 Nexus Standard Based Trace for RISC-V (as defined by this specification).

E-Trace Efficient Trace for RISC-V (as defined by E-Trace Specification).

1.2. Trace Encoder Interfaces | Page 6
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Term Definition

Unconditional Jump On RISC-V ISA all jump instructions are always unconditional, but these two words are always used
together to avoid any confusions with the term 'branch' used by the IEEE-5001 Nexus Standard. The
two main sub-categories of unconditional jumps that are relevant for tracing are: direct
unconditional jump and indirect unconditional jump.

Direct Conditional
Branch

On RISC-V ISA all branch instructions are always direct and conditional (and also relative), but these
three words are always used together to avoid confusion with the term 'branch' used by the IEEE-
5001 Nexus Standard.

1.3. Definitions and Terminology | Page 7
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Chapter 2. Trace Ingress Port

N-Trace uses the same ingress port as specified in E-Trace Specification (chapter 4 Instruction Trace
Interface).

• As this specification does not define the data trace yet, sub-chapters 4.3 Data Trace Interface
requirements and 4.4 Data Trace Interface are not applicable.

• It is an ambition to extract single, shared RISC-V Trace Ingress Port specifications (combining
this chapter with relevant E-Trace chapter).

◦ Names of 'itype' values used in this specification are a bit different than names in E-Trace
specification. These names were unconditionally enforced by ARC (during review phase) as
compulsory in all relevant specifications from now on.

The table below provides a detailed mapping of causes for terminating an instruction block to the
corresponding itype encoding. It could be used during development of ingress port logic inside of a
hart. For some instructions operands matter - for example JALR rd,rs1 instruction may generate 5
different, distinct itype values.

Table 2. Generating itype for different instructions

Instruction Condition/Notes itype Value/Name

Exception in
instruction

An exception trap that occurred following the final retired
instruction in the block

1 = Exception

EBREAK, ECALL,
C.EBREAK

An exception trap that occurred following the final retired
instruction in the block due to these instructions. These
instructions do not retire.

1 = Exception

Interrupted
instruction

An interrupt trap occurred following the final retired
instruction in the block

2 = Interrupt

MRET, SRET Return from an exception or interrupt handler. 3 = Trap return

Conditional branch Not-taken direct, conditional branch. 4 = Not-taken branch

Conditional branch Taken direct, conditional branch. 5 = Taken branch

Any other instruction All other instructions that are not directly listed in this
table.

0 = No special type

Values of itype (3-bit) (without Implicit Return Optimization)

JAL rd Any direct jump/call. 0 = No special type

JALR rd, rs Any indirect jump/call. 6 = Indirect jump (with or without linkage)

C.J or C.JAL C extension has direct jump/calls only. 0 = No special type

CM.JT Defined by Zcmt extension. 0 = No special type

CM.JALT Defined by Zcmt extension. 0 = No special type

CM.POPRET* Defined by Zcmp extension. 6 = Indirect jump (with or without linkage)

Values of itype (4-bit) (needed for Implicit Return Optimization). link means x1 or x5.

JAL rd rd = link 9 = Direct call

rd = x0 11 = Direct jump (without linkage)

rd != link and rd != x0 15 = Other direct jump (with linkage)

JALR rd, rs rd = link and rs != link 8 = Indirect call

rd = link and rs = link and rd = rs 8 = Indirect call

rd = link and rs = link and rd != rs 12 = Co-routine swap

rd != link and rs = link 13 = Function return

Chapter 2. Trace Ingress Port | Page 8
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Instruction Condition/Notes itype Value/Name

rd = x0 and rs != link 10 = Indirect jump (without linkage)

rd != link and rd != x0 and rs != link 14 = Other indirect jump (with linkage)

C.JAL Expands to JAL x1, offset 9 = Direct call

C.JALR rs rs = x5 12 = Co-routine swap

rs != x5 8 = Indirect call

C.JR rs rs = link 13 = Function return

rs != link 10 = Indirect jump (without linkage)

C.J Expands to JAL x0, offset 11 = Direct jump (without linkage)

CM.JT Defined by Zcmt extension. 11 = Direct jump (without linkage)

CM.JALT Defined by Zcmt extension. 9 = Direct call

CM.POPRET* Defined by Zcmp extension. 13 = Function return


Branches (itype=4, 5) are always conditional, direct branches. In RISC-V ISA all jumps,
calls, returns are always unconditional.


Extended 4-bit itype (codes 8..15) are only necessary when Implicit Return Optimization is
implemented.


Symbol link means register x1 or x5 as specified in The RISC-V Instruction Set
Manual, Volume I: Unprivileged ISA document.


Jump instructions (CM.JT and CM.JALT) defined by ratified Zcmt extension are handled
as direct (inferable) jumps as jump tables are assumed to be static and known to the
decoder.

Table below defines how N-Trace encoder should handle different 3-bit itype values on trace ingress
port.

Table 3. Handling of 3-bit itype values

# itype Encoder Action

0 No special type Only update I-CNT field.

1 Exception Update I-CNT field.
Emit Indirect Branch message with B-TYPE=2 or 1.
IMPORTANT: An address emitted is known at the next valid ingress port cycle.

2 Interrupt Update I-CNT field.
Emit Indirect Branch message with B-TYPE=3 or 1.
IMPORTANT: An address emitted is known at the next valid ingress port cycle.

3 Trap return Update I-CNT field.
Emit Indirect Branch message with B-TYPE=0.
IMPORTANT: An address emitted is known at the next valid ingress port cycle.

4 Not-taken branch For BTM mode:
Only update I-CNT field.

For HTM mode:
Update I-CNT field.
Add 0 as least significant bit to HIST field.
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# itype Encoder Action

5 Taken branch For BTM mode:
Update I-CNT field.
Generate DirectBranch message.

For HTM mode:
Update I-CNT field.
Add 1 as least significant bit to HIST field.

6 Indirect jump (with or
without linkage)

Update I-CNT field.
Emit Indirect Branch message with B-TYPE=0.
IMPORTANT: An address emitted is known at the next valid ingress port cycle.

7 Reserved -

When the itype input of ingress port is 4-bit wide, the Indirect jump (with or without linkage) itype=6
should not be generated and one of the following values should be generated instead. Encoder must
handle call stack action as described in the Implicit Return Optimization chapter (if enabled).

Table 4. Handling of 4-bit itype values

# itype Encoder Action Stack Action

8 Indirect call Update I-CNT field. Emit Indirect Branch message with B-TYPE=0 Push

9 Direct call Only update I-CNT field. Push

10 Indirect jump (without
linkage)

Update I-CNT field.
Emit Indirect Branch message with B-TYPE=0.
Same handing as itype=14

-

11 Direct jump (without
linkage)

Only update I-CNT field.
Same handing as itype=15

-

12 Co-routine swap Update I-CNT field.
If Pop does not returns the same address as PC at next valid ingress port cycle,
emit Indirect Branch message with B-TYPE=0.

Pop,Push

13 Return Update I-CNT field.
If Pop does not returns the same address as PC at next valid ingress port cycle,
emit Indirect Branch message with B-TYPE=0.

Pop

14 Other indirect jump
(with linkage)

Update I-CNT field.
Emit Indirect Branch message with B-TYPE=0.
Same handing as itype=10

-

15 Other direct jump (with
linkage)

Only update I-CNT field.
Same handing as itype=11

-


N-Trace messages do not differentiate instructions classified as … jump (with linkage)
and … jump (without linkage), so both N-Trace ingress ports and N-Trace encoders
implementations may ignore differences between with/without linkage values.

If optional trTeInstEnAllJumps bit is set, trace ingress port is required to report itype=5 (Taken
branch) for all direct unconditional jumps, which are normally reported as itype = 0 or 15.


The N-Trace encoder does not require cause and tval ingress port signals, which are valid
only for exceptions and interrupts, as these details are not reported in N-Trace messages.
Instead, N-Trace solely provides the address of the exception or interrupt handler


Since almost every ingress port cycle updates I-CNT, there is a possibility of overflow. For
more information, see I-CNT Details chapter regarding I-CNT management and overflow
handling.
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Chapter 3. N-Trace Transmission Protocol

The IEEE-5001 Nexus Standard defines a trace messaging protocol using several MDO (Message Data
Out) signals and one or two flag signals known as MSEO (Message Start/End Out). A Nexus message is
sent or stored in a record composed of MDO and MSEO.

N-Trace specification defines 6-bit MDO and 2-bit MSEO so both fit in a single byte.

• It allows easy storage in memory as well as sending using 1-bit/ 2-bit/ 4-bit/ 8-bit/ 16-bit parallel
transport (which is supported by many existing trace probes and connectors).

• Decoding software may work on bytes and 32-bit/64-bit words and expect MSEO bits at two least
significant bits of each byte.

N-Trace message transmission protocol is a strict subset of IEEE-5001 Nexus Standard trace
messaging protocol.

Table 5. N-Trace subset

Protocol Feature Nexus Standard N-Trace (strict subset of Nexus)

Number of MSEO bits 1 or 2 2

Number of MDO bits At least 1 6

Total (MDO+MSEO) bits At least 2 8 (one byte)

Order (transmitted or stored) Vendor defined MSEO before MDO, least significant bit for each field first

Max field size Not specified 64 bits (some 32 bits or less)

Max standard message size Not specified 38 bytes (maximum sum of all fields)

The maximum standard message size of 38 bytes in this version of the specification is to transmit
IndirectBranchHistSync message which includes TCODE/ SRC/ SYNC/ B-TYPE(5 bytes total), I-
CNT(30 bits, 5 bytes), F-ADDR(63 bits, 11 bytes), HIST(32 bits, 6 bytes) TSTAMP(64 bits, 11 bytes).

While implementations may have a shorter maximum message size (e.g. due to I-CNT being smaller),
they must assure that the internal FIFOs are designed to hold at least two maximum sized messages
that the implementation can produce.

While decoding software may be designed to avoid dynamic memory allocation, it must nonetheless
be robust enough to handle messages of any size. This is to account for scenarios when a trace memory
could be corrupted, such as a trace consisting entirely of zeros, which could be interpreted as an
unusually long variable-length field.

Custom messages and fields may carry different payloads and may be larger than 64 bits and 38 bytes.

3.1. MSEO Sequences

MSEO[1:0] bits (located in the least significant bits of each byte) are defined by the follow rules:

• The first byte of a message sends the least significant bits of the message and is indicated by
MSEO[1:0]=00.

• Bytes occupied by fixed-length fields are sent using MSEO[1:0]=00.

• The last byte of a variable-length field, that is not last byte of a message, is indicated by
MSEO[1:0]=01.

◦ A variable-length field in a message always ends on a byte boundary (zero extended as needed).
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◦ The non-last bytes of a variable-length fields are indicated by MSEO[1:0]=00.

• The last byte of a message is indicated by MSEO[1:0]=11.

◦ It also implies an end of the last (fixed-length or variable-length) field of a message.

• Idle bytes (between messages or used as padding) are indicated by MSEO[1:0]=11 and
MDO[5:0]=111111 (entire byte is 0xFF).

• Value of MSEO[1:0]=10 is reserved for future extensions.

The table below provides possible sequences of MSEO[1:0] bits (to expand above rules - highlighted
MSEO represent the actual function):

Table 6. Transitions of MSEO Bits

MSEO Function Previous-Current MSEO[1:0] Sequence

Start of message 11-00

Middle of field 00 (or 01)-00

End of variable-length field 00 (or 01)-01

End of message 00 (or 01)-11

Idle (no message) 11-11

Reserved 11-01

Reserved any-10



Original IEEE-5001 Nexus Standard defines the MSEO protocol as follows:

• Two 1-s followed by one 0 indicates the start of a message.

• 0 followed by two or more 1-s indicates the end of a message.

• 0 followed by 1 followed by 0 indicates the end of a variable-length field.

• 0-s at all other clocks during transmission of a message.

• 1-s at all clocks during no message transmission (idle).

Dual MSEO protocol (utilized by this N-Trace specification) is a two-pin mode of this
general (single and dual) MSEO protocol definition.

3.2. Unified N-Trace Message Structure

Each N-Trace message has identical structure (100% compatible with IEEE-5001 Nexus Standard):

• Very first field is always fixed-length TCODE (Transport Code) which defines the meaning and
format of subsequent fields.

• In case of simultaneous tracing from more than one hart, the second field is always fixed-length
SRC (Message Source) field, which provides a unique ID of message source.

◦ This field allows trace decoders to separate messages from different trace sources (Trace
Encoders, harts) without knowing any details of each of the messages.

◦ This method can be used to handle different (opaque) trace or debug or performance data
using N-Trace transport/storage/export infrastructure.

• One or more (fixed-length or variable-length) payload fields. Sequence and selection of these fields
depend on the value of TCODE field.
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◦ In some rare cases one of preceding fields may define number of following fields.

• Very last field is (optional) variable-length TSTAMP (Timestamp) field.

◦ It may be possible to generate and analyze timestamps in a unified (simpler) way.

3.3. Order of bits and bytes

Order of bits and bytes:

• Trace messages/packets are considered as sequences of bytes and are always transmitted with least
significant bits/bytes first.

• IEEE-5001 Nexus Standard MSEO bits are transmitted on the least significant part and bit#0 first.

• Idle state must be transmitted as all 1s MSEO and MDO bits.

• For transmission on a 16bit interface (e.g. PIB 16-bit mode), the first byte of message/packet is
transmitted on the least significant part and the MSEO of the second/odd byte is transmitted on
bits #8-#9 and MDO on bits #10-#15.

 Above rules allow receiving trace probes to skip idle messages.

3.4. PIB Idle Cycles Explained

This chapter describes N-Trace specific details about the transmission via a Pin Interface Block (PIB),
as it is described in the RISC-V Trace Control Interface Specification.

Trace messages may start on any (positive or negative) edge of trace clock.


Once a message is started all bits of that message must be transmitted on consecutive
trace clock edges (both positive and negative).

Said so, an idle sequence may be sent using any number of trace clock edges (positive or negative).

To explain this let’s assume the following serially transmitted (in 1-bit PIB mode) sequences of bits
(MSEO[0] bit being first on the left):

• < 11 DDDDDD> - 8 bits in a last byte of a message (11 = MSEO, DDDDDD = DATA bits)

• < 1*n > - sequence of n-bits long idle bits (each must be 1)

• < 00 TTTTTT> - 8 bits in a first byte of a message (00 = MSEO, TTTTTTT = TCODE bits)

The following 4 example sequences are all valid:

• … < 11 DDDDDD> < 00 TTTTTT> … ⇒ No idle bits/cycles between consecutive messages.

• … < 11 DDDDDD> < 1*2 > < 00 TTTTTT> … ⇒ Two (even) idle bits.

• … < 11 DDDDDD> < 1*3 > < 00 TTTTTT> … ⇒ Three (odd) idle bits (second message starts at
another trace clock edge).

• … < 11 DDDDDD> < 1*8 > < 00 TTTTTT> … ⇒ 8 idle bits (idle sequence can be considered as byte
0xFF).

Some implementations may always send idle sequences using even (or even multiple of 8) number of
trace clocks - in such a case all messages will always start on a positive or negative trace clock. But
conformant trace probes must handle any number of idle clocks.
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

The trace probe needs to be able to synchronize with the trace stream and to detect trace
message boundaries. This procedure is sometimes referred to as "message alignment
synchronization" or "alignment-sync".

For 8-bit or 16-bit trace idle cycles are not required (to detect an alignment) as MSEO bits
are in well-defined positions and trace probes will know where is a start of a message.

For 1-bit, 2-bit and 4-bit trace modes PIB must generate at least one idle byte to allow
trace probes to detect which bit is the first MSEO bit of a message. How it is done is not
defined in this specification. Here are two possible implementations:

• Generate at least one idle byte periodically in a trace stream anywhere between
messages (PIB is aware about message boundaries as end of message has MSEO=11
bits).

• Always add an extra idle byte before sending synchronizing messages. It will
guarantee that boundaries of every synchronizing message are always detectable and
decoding may start from it.

3.5. N-Trace Message Example

Table below shows one N-Trace message with several fields. It is an output from N-Trace dump tool
(part of N-Trace reference C code) with an added Explanation column.

Table 7. MDO and MSEO Encoding Example

Byte MDO [5:0] MSEO [1:0] Decoded (by
reference tool)

Explanation

0xFF 111111 11 Idle Most likely idle but can also be the last byte of the previous message.

0x70 011100 00 TCODE[6] = 28 -
IndirectBranchHist

First byte, all 6 MDO bits have TCODE.

Here we could have an SRC field (it would shift the start of B-TYPE).

0xD0 110100 00 B-TYPE[2] = 0x0 This is a 2-bit (fixed-length) field. As B-TYPE is a fixed-length field,
four most significant bits are part of the next field (I-CNT).

0x1D 000111 01 I-CNT[10] = 0x7D This is a second byte of the 10-bit (value 0x7D) variable-length I-CNT
field. Four least significant bits (0b1101=0xD) are defined in previous
MDO. Three most significant bits are all 0-s as variable-length field
uses all 6 MDO bits.

0x1D 000111 01 U-ADDR[6] = 0x7 This is a single byte variable-length U-ADDR field (with three most
significant 0-s).

0xF8 111110 00 Normal transfer of new field (6 least significant bits).

0xFF 111111 11 HIST[12] = 0xFFE Last byte of message. It implies the end of the 12-bit HIST field. In this
field we do not have any extra most significant 0-s.

Here optional TSTAMP field could be sent
Previous MSEO should became 01 encoding end of HIST field, but not end of the message).

0xFF 111111 11 Idle This is idle as this is the second byte with MSEO=11 (NOTE: Last byte
of message is also 0xFF).
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Chapter 4. N-Trace Specific Trace Controls

This chapter describes how fields and bits from Trace Encoder control registers (named using trTe…
pattern) are influencing N-Trace encoder and N-Trace protocol messages. N-Trace specific
clarifications, in addition to description in RISC-V Trace Control Interface specification are provided.


The table below does not provide names of Trace Encoder control registers as names of
bits/fields used in Trace Control Interface are unique.

Table 8. Trace Encoder Parameters and Controls

Trace Control Field Applicability Description

trTeActive Required See RISC-V Trace Control Interface Specification.

trTeEnable Required See RISC-V Trace Control Interface Specification.

trTeInstTracing Required See RISC-V Trace Control Interface Specification.

trTeEmpty Required See RISC-V Trace Control Interface Specification.

trTeInstMode Required 3: Generate instruction trace using BTM (Branch Trace Messaging) mode.
6: Generate instruction trace using HTM (History Trace Messaging) mode.
0, 7: See RISC-V Trace Control Interface Specification.
1-2, 4-5: Reserved for future N-Trace use.
At least a value of 3 or 6 must be settable.

trTeContext Optional Controls generation of Ownership messages.

trTeInstTrigEnable Optional See RISC-V Trace Control Interface Specification.

trTeInstStallOrOverflow Required See RISC-V Trace Control Interface Specification.

trTeInstStallEna Optional See RISC-V Trace Control Interface Specification.

trTeInhibitSrc Optional Controls generation of SRC field.

trTeInstSyncMode Required Controls generation of Synchronizing Messages with SYNC field=2.

trTeInstSyncMax Required Controls generation of Synchronizing Messages with SYNC field=2.

trTeFormat Required Must be set to 1 (which denotes N-Trace format).

trTeVerMajor Required See RISC-V Trace Control Interface Specification.

trTeVerMinor Required See RISC-V Trace Control Interface Specification.

trTeCompType Required See RISC-V Trace Control Interface Specification.

trTeProtocolMajor Required Must be 1 to encode this version (1.0) of N-Trace protocol. Value different
than 1 is considered a non-compatible version and must be rejected by the
trace tool if it is only compliant with version 1.0 of the N-trace protocol.

trTeProtocolMinor Required Must be 0 to encode this version (1.0) of N-Trace protocol. When
trTeProtocolMajor is 1, values other than 0 are considered down
compatible extension and should be accepted by the trace tool. Any future
non-compatible feature should be specifically enabled (by new control
bits), so older tools (which never set these new bits) should work with it.

trTeInstNoAddrDiff Not applicable Must be hard coded as 0.

trTeInstNoTrapAddr Not applicable Must be hard coded as 0.

trTeInstEnSequentialJump Optional See Sequential Jump Optimization chapter.

trTeInstEnImplicitReturn Optional See Implicit Return Optimization chapter.

trTeInstEnBranchPrediction Not applicable Must be hard coded as 0.

trTeInstEnJumpTargetCache Not applicable Must be hard coded as 0.

trTeInstImplicitReturnMode Optional See Implicit Return Optimization chapter.

trTeInstEnRepeatedHistory Optional See Repeated History Optimization chapter.

trTeInstEnAllJumps Optional See RISC-V Trace Control Interface Specification.
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Trace Control Field Applicability Description

trTeInstExtendAddrMSB Optional See Virtual Addresses Optimization chapter.

trTeSrcID Optional Controls generation of SRC field.

trTeSrcBits Optional Controls generation of SRC field.

trTeInstFilters Optional See RISC-V Trace Control Interface Specification.

trTeDataImplemented Not applicable Must be 0 as IEEE-5001 Nexus Standard data trace messages are not part
of version 1.0 of N-Trace specification.

Other trTeData… Not applicable Must be 0 as IEEE-5001 Nexus Standard defines data trace messages,
future versions of N-Trace may allow these (as an optional extension).

All trTeTrig… Optional See RISC-V Trace Control Interface Specification.

All trTeFilter… Optional See RISC-V Trace Control Interface Specification.

All trTeComp… Optional See RISC-V Trace Control Interface Specification.

trTsEnable Optional Part of potentially shared Timestamp Unit controls generation of TSTAMP
field. See RISC-V Trace Control Interface Specification for details of the
Timestamp Unit.
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Chapter 5. Main N-Trace Trace Modes

RISC-V N-Trace defines two instruction trace modes:

• Branch Trace Messaging (BTM) - each taken direct conditional branch generates a minimum
two-byte message. However, repeated branches can be aggregated and reported as a single message
with a count, rather than numerous identical messages.

• History Trace Messaging (HTM) - every direct conditional branch, whether taken or not-taken,
contributes a single bit to the history buffer, significantly enhancing the trace efficiency.

The encoder is required to implement at least one of these modes. Both may be supported, but is not
required.



Above modes correspond to the following IEEE-5001 Nexus Standard instruction trace
modes:

• Branch Trace Messaging using Traditional Messages

• Branch Trace Messaging using Branch History Messages


The IEEE-5001 Nexus Standard defines different conformance levels. These levels are not
directly applicable to N-Trace as Nexus levels always include debug levels. Different N-
Trace options are provided in N-Trace Specific Trace Controls chapter.
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Chapter 6. N-Trace Messages (Overview)



The terminology Indirect Branch as used by the IEEE-5001 Nexus Standard may lead to
confusion, given that the RISC-V ISA exclusively permits direct conditional branches,
which are always relative. Furthermore, the RISC-V ISA makes a distinction between 'jump'
(unconditional flow change) and 'branch' (conditional flow change), a differentiation not
observed in Nexus terminology, where any flow change, including exceptions and
interrupts, is uniformly referred to as a 'branch'. This specification employs the terms
'branch' and 'jump' as defined by RISC-V ISA.

6.1. Fields in Messages

The table presented below enumerates all message types that can be generated, with each row
comprehensively defining the fields associated with a particular message type. Fields that are present
in different messages are consistently ordered.

Message field attributes are described using the following terminology:

• [n]: A fixed-length field that is n bits wide.

• [Var]: A variable-length, non-empty (at least 1-bit wide), field.

• [Cfg]: A configurable field, where the existence and size depend on the encoder configuration
options.

Table 9. Fields in Messages

Message ID/Field [size] TCODE
[6]

SRC
[Cfg]

SYNC
[4]

B-TYPE
[2]

Other fields I-CNT
[Var]

x-ADDR
[Var]

HIST
[Var]

TSTAMP
[Var,Cfg]

Ownership 2 Cfg PROCESS [Var] Cfg

DirectBranch 3 Cfg Yes Cfg

IndirectBranch 4 Cfg Yes Yes U-ADDR Cfg

Error 8 Cfg ETYPE [4] +
ECODE [Var]

Cfg

ProgTraceSync 9 Cfg Yes Yes F-ADDR Cfg

DirectBranchSync 11 Cfg Yes Yes F-ADDR Cfg

IndirectBranchSync 12 Cfg Yes Yes Yes F-ADDR Cfg

ResourceFull 27 Cfg RCODE [4] +
RDATA [Var]

Cfg

IndirectBranchHist 28 Cfg Yes Yes U-ADDR Yes Cfg

IndirectBranchHistSync 29 Cfg Yes Yes Yes F-ADDR Yes Cfg

RepeatBranch 30 Cfg B-CNT [Var] Cfg

ProgTraceCorrelation 33 Cfg EVCODE [4] +
CDF [2]

Yes Cfg Cfg

Vendor Defined 56..62 Cfg Designated for use by Vendor Defined messages

Reserved other Cfg Reserved for future extensions of N-Trace specification



Any message may include the optional TSTAMP [Var,Cfg] field as the very last field of a
message. It must be enabled by trTsEnable control bit. Timestamp field always starts at
byte-boundary (as it is always preceded by variable-length field). See Timestamp Reporting
chapter for more details.
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

Messages marked as Reserved or Vendor Defined should be ignored by decoders
interested in program flow only. However, decoders should provide an option to
display/dump them and/or generate a warning as such a message may be seen when
trace capture is corrupted. Vendor Defined messages can be used for prototyping,
debugging, validation and maintenance purposes.

Reference code header NexRvMsg.h defines all N-Trace messages in machine-readable format. Here is
small snipped from this file as an example:

  // Naming:
  //    NEXM=Nexus Message, BEG/END=Beginning/End of definition.
  //    SRC=Message source (system-field). Name of an option given.
  //    FLD/VAR=Fixed/variable size field.
  //    ADR=Special case of variable field (without least significant bit).
  //    CFG=Configurable, Name of an option given.
  NEXM_BEG(IndirectBranchSync, 12)
    NEXM_SRC(SrcBits)                         // Configurable
    NEXM_FLD(SYNC, 4)
    NEXM_FLD(BTYPE, 2)
    NEXM_VAR(ICNT)
    NEXM_ADR(FADDR)
    NEXM_VAR(TSTAMP)
  NEXM_END()

  NEXM_BEG(ResourceFull, 27)
    NEXM_SRC(SrcBits)                         // Configurable
    NEXM_FLD(RCODE, 4)
    NEXM_VAR(RDATA)
    NEXM_VAR_CFG(HREPEAT, EnaRepeatedHistory) // Configurable
    NEXM_VAR(TSTAMP)
  NEXM_END()

  NEXM_BEG(IndirectBranchHist, 28)
    NEXM_SRC(SrcBits)                         // Configurable
    NEXM_FLD(BTYPE, 2)
    NEXM_VAR(ICNT)
    NEXM_ADR(UADDR)
    NEXM_VAR(HIST)
    NEXM_VAR(TSTAMP)
  NEXM_END()


Reference code is using plain C-style identifiers, so the field name as B-TYPE will become
BTYPE.

6.2. Common Fields

The table below provides details for fields which are used in more than one message type. Fields which
are present in only one message are described with each message.

Table 10. Details of Common Fields

Name Bits Description Values/Notes

Fields used in many messages

TCODE 6 Transfer Code Message header that identifies the number and/or size of fields to be transferred, and
how to interpret each of the fields following it.
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Name Bits Description Values/Notes

SRC Cfg Source of
Message
Transmission

Width of SRC field is defined by trTeSrcBits control field and it may be enabled/disabled
by trTeInhibitSrc control bit. This optional field is used to identify the source of the
message transmission. In configurations that comprise only a single hart, this field need
not be transmitted. For devices that comprise multiple harts, this field must be
transmitted (if enabled) as part of the message to identify the source of the message
transmission. The transmitted SRC field size should be the same for all enabled trace
encoders sharing a trace stream.

SYNC 4 Reason for
Synchronization

Encodings and details are provided in the Synchronizing Messages chapter.
NOTE: The SYNC field is always sent together with the F-ADDR field, so decoding may
start from a message containing the SYNC field.

B-TYPE 2 Branch Type Reason for indirect flow change:
0: Indirect control flow change (jump, call or return).
1: Exception or interrupt (if the encoder is not capable of reporting 2 and 3).
2: Extension: Exception
3: Extension: Interrupt
NOTE: Either 1-only or both 2 and 3 should be implemented and consistently reported.
Extended values 2 and 3 allow trace tools to distinguish exceptions and interrupts easily.

I-CNT Var Instruction
Count

As RISC-V allows variable-length instructions, this is the number of 16-bit (INST_LEN/2)
instruction units executed/retired since the I-CNT counter was transmitted or reset. See
I-CNT Details chapter for more details.

F-ADDR Var Full Target
Address

Full PC without the least significant bit. The least significant bit is not reported as it is
always 0. See Address Compression chapter for more details.
NOTE: The F-ADDR field is always sent together with the SYNC field.

U-ADDR Var Unique part of
Target Address

Unique part of PC address (XOR with recently reported address). See Address
Compression chapter for more details.
The U-ADDR field is always sent together with the B-TYPE field.

HIST Var Direct Branch
History map

Most significant bit (always 1) serves as a 'stop-bit', the least significant bit denotes the last
direct conditional branch. See HIST Field Generation chapter for more details.

TSTAMP Var Timestamp
(optional)

It must be enabled by trTsEnable control bit. See Timestamp Reporting chapter for more
details.

IEEE-5001 Nexus Standard does not define limits for variable-length fields, but N-Trace provides
some limits. It will help to write efficient decoding software but is not limiting hardware in any way.

Table 11. Maximum Field Sizes

Field Symbol Bits Description

SRC NTRACE_MAX_SRC 12 Determined by size of Trace Control register field. Enough for 4096 (4K)
trace sources.

I-CNT NTRACE_MAX_ICNT 22 Usually a smaller value will be sufficient. An overflow bit may be used for
efficient I-CNT full detection.

F-ADDR,
U-ADDR

NTRACE_MAX_ADDR 63 Only 63 bits suffice as the least significant bit of an instruction address is
always 0 and does not need to be reported.

HIST NTRACE_MAX_HIST 32 It includes stop-bit. This size is optimal for not wasting any bits in very
often used ResourceFull messages.

TSTAMP NTRACE_MAX_TSTAMP 64 It is certainly big enough. It corresponds to architecture defined timer and
cycle count registers.

HREPEAT NTRACE_MAX_HREPEAT 18 Assure some trace is periodically generated for very long loops.

B-CNT NTRACE_MAX_BCNT 18 Assure some trace is periodically generated for very long loops.
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Chapter 7. N-Trace Messages (Details)

This chapter provides a detailed description of all N-Trace messages. Overview of all fields in all
messages is provided in the Fields in Messages table.

Common fields are described in the Common Fields chapter, but fields specific to message TCODE
values are explained here.

Size of field in Bits column may be one or more of the following values:

• n (1..6) - This is an n-bits wide, fixed-length field.

• Var - This is a variable-length, at least 1-bit wide field.

• Cfg - Size of this field depends on configuration setting (Cfg fields are always optional).

Each message has its own table showing all fields in that message.



The IEEE-5001 Nexus Standard presents tables with TCODE (which is sent first) in the
last row. In contrast, this specification shows Fields in Messages in the order they are sent
(the first field sent is described first), aligning with the order of storage, processing, and
text dumps.

7.1. Ownership Message

This message furnishes the requisite context (privileged mode and Context ID, as assigned by the
operating system or hypervisor), enabling the decoder to correlate program flow with distinct code
segments associated with various programs. Activation of this feature requires explicit enabling of the
trTeContext control bit.

Reporting of this information occurs under one of the following three conditions:

• Upon the retirement of an instruction that writes to the scontext/hcontext CSR (as reported via
priv and context field on an ingress port).

• In the event of a trap or trap return that results in a change in privilege mode (including ECALL
and EBREAK instructions).

• Following any trace synchronizing message.



Should hcontext be implemented, the protocol requires two consecutive messages: the
first presenting hcontext information and the second scontext information. This
sequence is important for enabling the decoder to identify the code associated with a
specific process.


If tracing multiple OS-es, main decoder may route messages to an OS-specific decoder
after seeing hcontext and the scontext (which follows) will be decoded by decoder
determined by hcontext.

Table 12. Ownership Message Fields

Bits Name Description

6 TCODE Value=2(0x2). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

Var PROCESS This is a variable-length field, which encodes V and PRV privilege mode bits as well as
scontext/hcontext CSR values. Details are provided below.
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Bits Name Description

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

Field PROCESS is encoded as 4 sub-fields (FORMAT, PRV, V, CONTEXT). Bit layout is defined in RTL-
like syntax as follows:

PROCESS[x+5:0] = {CONTEXT[x:0], V[0], PRV[1:0], FORMAT[1:0]}

Table 13. Encoding of PROCESS field (in LSB to MSB order)

Reason FORMAT[1:0] PRV[1:0] V[0] CONTEXT[x:0]

V and/or PRV change 00 Yes Yes  — 

Reserved 01  —   —   — 

Sync or scontext change 10 Yes Yes scontext value

Sync or hcontext change 11 Yes Yes hcontext value

Encodings of V/PRV follow ISA privilege mode encodings and are encoded as follows:

U-mode:     V=0, PRV[1:0]=00
S-mode:     V=0, PRV[1:0]=01
M-mode:     V=0, PRV[1:0]=11
VU-mode:    V=1, PRV[1:0]=00
VS-mode:    V=1, PRV[1:0]=01

All unused encodings are reserved.

Examples:

PROCESS=0x3B2 = 0b11101_1_00_10   => scontext=0x1D,V=1,PRV[1:0]=00  (VU-mode)
PROCESS=0xC           0b0_11_00   => V=0,PRV[1:0]=11                (M-mode)
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7.2. DirectBranch Message

It is applicable to BTM mode only.

This message is generated when the taken direct conditional branch has retired.

Table 14. Direct Branch Message Fields

Bits Name Description

6 TCODE Value=3(0x3). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

Var I-CNT Standard Instruction Count (I-CNT) field.

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

Last instruction in the code block (or blocks) with all inferable instructions (described by I-CNT) is a
taken, direct conditional branch instruction. Next PC is determined by decoding the conditional
branch instruction opcode to determine the encoded signed offset and adding it to the address of the
conditional branch instruction.



Not-taken direct conditional branches and direct unconditional jumps increment I-CNT
but do not generate any trace. Direct unconditional jumps change the PC to the
destination address of such a jump. The I-CNT enables determination of the PC of the last
instruction in the code block(s).
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7.3. IndirectBranch Message

It is applicable to BTM mode only.

This message is generated under two conditions:

• An instruction that causes an indirect unconditional control flow change has retired.

• A trap due to an interrupt or exception is delivered.

Table 15. Indirect Branch Message Fields

Bits Name Description

6 TCODE Value=4(0x4). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

2 B-TYPE Standard Branch Type (B-TYPE) field.

Var I-CNT Standard Instruction Count (I-CNT) field.

Var U-ADDR Standard Unique Address (U-ADDR) field.

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

The last instruction within the code block(s), as specified by the I-CNT field, either represents an
indirect unconditional control flow change (i.e., jump, call, or return) or this packet is generated in
response to an exception or interrupt reported on the ingress port. The next PC is determined by
applying the Address Compression rules to the U-ADDR field present in this message.



Not-taken conditional branches and direct unconditional jumps do not generate any trace.
However, they do increase the I-CNT. Additionally, direct unconditional jumps modify the
PC to the destination address specified in the instruction. Consequently, the PC of the last
instruction in a code block(s) can be determined.
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7.4. Error Message

An error message must be generated in the event of an internal messages FIFO overflow, resulting in
the loss of a trace message.

Table 16. Error Message Fields

Bits Name Description

6 TCODE Value=8(0x8). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

4 ETYPE Standard Error Type (a subset of IEEE-5001 Nexus Standard encoding):
0: A FIFO overrun has resulted in the loss of one or more messages.
1..7: Reserved.
8..15: Designated for Vendor Defined Error(s).

Var ECODE Standard Error Code (a subset of IEEE-5001 Nexus Standard encoding). A bit mask that when not equal
to 0 may have one or more bits set as follows to indicate errors: 
0: Exact reason unknown/not provided.
xxxxxxx1: Reserved.
xxxxxx1x: Reserved (for data trace in future).
xxxxx1xx: Program Trace Message(s) lost.
xxxx1xxx: Ownership Trace Message(s) lost.
xxx1xxxx: Reserved.
xx1xxxxx: Reserved (for data trace in future).
x1xxxxxx: Reserved.
1xxxxxxx: Vendor Defined Message(s) lost.
IMPORTANT: The field must be generated even if the reported value is always 0, to guarantee that the
TSTAMP field aligns at the byte boundary.

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

Error Message must be sent immediately prior to a synchronizing message as soon as space is
available in the Trace Encoder output queue. It is recommended that the timestamp reported in the
message corresponds to the moment when the first trace message was dropped; however, this is not a
requirement.



This message is required as otherwise decoder (even though restart after FIFO overflow is
signaled) would not be aware that trace was lost in case of the following sequence of
events:

• Trace is turned off by trigger (or from any other reason).

• Message reporting 'trace off' event is lost (due to lack of space for it).

◦ Here Error Message should be generated (as soon as there is a room)

• Trace is never restarted.

• Trace is stopped (this will not generate any trace as trace is turned off).

In the above case, Error Message will be the last message in trace stream.
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7.5. ProgTraceSync Message

Table 17. Program Trace Synchronization Message Fields

Bits Name Description

6 TCODE Value=9(0x9). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

4 SYNC Standard Synchronization Reason (SYNC) field.

Var I-CNT Standard Instruction Count (I-CNT) field.

Var F-ADDR Standard Full Address (F-ADDR) field.

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

This message is produced at the start or restart of trace. In such instances, the I-CNT field is required
to be set to 0. However, under certain conditions associated with the SYNC parameter (e.g., External
Trace Trigger), the I-CNT field may not be zero. Instead, it serves to pinpoint the precise Program
Counter (PC) location at which the specified trigger or event occurred. Additionally, the F-ADDR field
provides the complete PC address at the moment the trigger was activated.
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7.6. DirectBranchSync Message

Table 18. Direct Branch with Sync Message Fields

Bits Name Description

6 TCODE Value=11(0xB). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

4 SYNC Standard Synchronization Reason (SYNC) field.

Var I-CNT Standard Instruction Count (I-CNT) field.

Var F-ADDR Standard Full Address (F-ADDR) field.

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

This message is produced under the same conditions as the DirectBranch message. However, it further
includes details on the reason for synchronization via the SYNC field, as well as the full Program
Counter (PC) address through the F-ADDR field.
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7.7. IndirectBranchSync Message

Table 19. Indirect Branch with Sync Message Fields

Bits Name Description

6 TCODE Value=12(0xC). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

4 SYNC Standard Synchronization Reason (SYNC) field.

2 B-TYPE Standard Branch Type (B-TYPE) field.

Var I-CNT Standard Instruction Count (I-CNT) field.

Var F-ADDR Standard Full Address (F-ADDR) field.

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

This message is generated in the same conditions as IndirectBranch message, but additionally
provides a reason for synchronization (SYNC field) and full PC (F-ADDR field).

7.7. IndirectBranchSync Message | Page 28

RISC-V N-Trace (Nexus-based Trace) Specification | © RISC-V International



7.8. ResourceFull Message

This message is emitted when either the HIST register is full, or the I-CNT counter became full for a
given encoder implementation. This mechanism ensures that no information is lost, as it enables the
decoder to reconstruct larger I-CNT and HIST fields by concatenating or adding the emitted values.

Table 20. Resource Full Message Fields

Bits Name Description

6 TCODE Value=27(0x1B). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

4 RCODE Standard Resource Code field (defines a meaning of RDATA fields).
0: I-CNT counter has reached max value and is reported in the RDATA[0] field. See I-CNT Details
chapter.
1: HIST field is full and is reported in the RDATA[0] field. See HIST Field Full chapter for more details.
2: Extension: HIST field is full and is repeated. RDATA[0] field holds HIST value and RDATA[1] field
holds HREPEAT (History Repeat) value. This optional extension can be enabled via the
trTeInstEnRepeatedHistory control bit.
3..7: Reserved for future encodings.
8..15: Designated for vendor specific encodings.

Var RDATA [0] Standard For RCODE=0, this is the I-CNT field. For RCODE=1 this is the HIST field (with most
significant bit=1 being stop-bit).
Extension: For RCODE=2 this is the HIST field (with most significant bit=1 being stop-bit).

Var,Cfg RDATA [1] Extension: When RCODE=2 is reported this field includes HREPEAT (History Repeat) count.

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

When RCODE is set to 1, this signifies that the HIST register is full and will not be repeated. Under
these circumstances, the HIST field generally encapsulates the maximum number of history bits
implemented within the HIST register.

Nonetheless, implementations may opt to include any quantity of history bits in this field, with the
range extending from a minimum of 2 bits up to the maximum defined by NTRACE_MAX_HIST bits

Should the I-CNT counter and the HIST register simultaneously reach their respective capacity limits,
it is mandatory to emit two successive ResourceFull messages.
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7.9. IndirectBranchHist Message

Table 21. Indirect Branch History Message Fields

Bits Name Description

6 TCODE Value=28(0x1C). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

2 B-TYPE Standard Branch Type (B-TYPE) field.

Var I-CNT Standard Instruction Count (I-CNT) field.

Var U-ADDR Standard Unique Address (U-ADDR) field.

Var HIST Standard Branch History (HIST) field.

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

Last instruction in the code block (or blocks) (described by HIST and I-CNT fields) is indirect
unconditional control flow change (jump, call, return) instruction or this message is generated when
exception or interrupt is reported in the ingress port. See HIST Field Generation and I-CNT Details
chapters for clarifications.

Next PC is determined by applying the Address Compression rules using the U-ADDR field in this
message.
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7.10. IndirectBranchHistSync Message

Table 22. Indirect Branch History with Sync Message Fields

Bits Name Description

6 TCODE Value=29(0x1D). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

4 SYNC Standard Synchronization Reason (SYNC) field.

2 B-TYPE Standard Branch Type (B-TYPE) field.

Var I-CNT Standard Instruction Count (I-CNT) field.

Var F-ADDR Standard Full Address (F-ADDR) field.

Var HIST Standard Branch History (HIST) field.

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

This message is generated in the same conditions as IndirectBranchHist message. However, it further
includes details on the reason for synchronization via the SYNC field, as well as the full Program
Counter (PC) address through the F-ADDR field.
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7.11. RepeatBranch Message

Table 23. Repeat Branch Message Fields

Bits Name Description

6 TCODE Value=30(0x1E). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

Var B-CNT Standard Branch Count field. Number of times the previous branch message (without a SYNC field) is
repeated. Generated if I-CNT, HIST and target address is the same as in the previous branch message.

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

This message is reported when an identical (direct or indirect) branch message is encountered (just to
save trace bandwidth). Trace decoder should just repeat handling of previous branch message B-CNT
times.
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7.12. ProgTraceCorrelation Message

This message is emitted when the trace is disabled or stopped.

Table 24. Program Trace Correlation Message Fields

Bits Name Description

6 TCODE Value=33(0x21). Standard Transfer Code (TCODE) field.

Cfg SRC Standard Message Source (SRC) field.

4 EVCODE Standard Reason to generate Program Correlation:
0: Entry into Debug Mode. Required (do not send 4 instead!).
1: Entry into Low-power Mode. Optional.
2..3: Reserved for data trace.
4: Program Trace Disabled (hart may be still running). Optional.
5..7: Reserved for future extensions of N-Trace specification.
8..15: Designated for vendor specific encodings.

2 CDF Standard number of CDATA fields following it:
0: Only I-CNT field follows and there is no HIST field.
1: I-CNT field and single CDATA (HIST) field (for HTM trace).
2..3: Reserved for future extensions of N-Trace specification.
In BTM trace mode CDF must be 0. In HTM trace mode CDF must be 1 (even if HIST field is empty,
encoded as 0x1).

Var I-CNT Standard Instruction Count (I-CNT) field.

Var,Cfg HIST Standard Branch History (HIST) field. This field must be present in HTM mode, so decoder does not
need to read CDF to determine its existence.

Var,Cfg TSTAMP Standard Timestamp (TSTAMP) field.

Explanations and Notes

It provides a reason (in EVCODE field) plus I-CNT and HIST fields, which allows the decoder to
determine the PC where an execution or the trace stopped.

This message includes the EVCODE field, which specifies the reason for generating this message,
alongside the I-CNT and HIST fields. These fields collectively enable the decoder to accurately
identify the PC location where execution or tracing was halted.
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Chapter 8. Field Encoding and Calculation Techniques

This chapter describes in detail how key fields (I-CNT, HIST, U-ADDR/F-ADDR and TSTAMP) are
calculated and encoded.

8.1. Address Compression

Address transmissions is compliant with the IEEE-5001 Nexus Standard (most significant bit 0-s
skipped) with optional extension allowing to skip identical most significant bits. See Virtual Addresses
Optimization chapter below for clarifications.

Rules when generating addresses:

• Only execution addresses (as seen by the hart) are reported. When virtual memory system is
enabled these are virtual addresses.

• The F-ADDR field is the full address associated with the trace event, provides a starting point for
reconstructing relative addresses.

• The U-ADDR field is a compressed address that is relative to the previous trace message with an
address field. It is generated by XORing the address with the previous message.

◦ To decode the full address from the relative address (U-ADDR) can be XORed with the
previously decoded full address.

• Address fields are sent beginning with bit 1 since all execution addresses are on a 2-byte
boundaries (the least significant bit is always 0 and never sent).

Address XOR Calculation Examples

==============================================================================================
| Address   | U-ADDR XOR calculations       | F-ADDR/U-ADDR field sent             | New REF |
|           |                               |                                      | Address |
==============================================================================================
|0x3FC04    |                               | F-ADDR=1_1111_1110_0000_0010=0x1FE02 | 0x3FC04 |
----------------------------------------------------------------------------------------------
|0x3F368    | REF =0011_1111_1100_0000_0100 |                                      |         |
|           | addr=0011_1111_0011_0110_1000 |                                      |         |
|           | XOR =0000_0000_1111_0110_1100 | U-ADDR=111_1011_0110=0x7B6           | 0x3F368 |
----------------------------------------------------------------------------------------------
|0x3E100    | REF =0011_1111_0011_0110_1000 |                                      |         |
|           | addr=0011_1110_0001_0000_0000 |                                      |         |
|           | XOR =0000_0001_0010_0110_1000 | U-ADDR=1001_0011_0100=0x934          | 0x3E100 |
==============================================================================================
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8.2. HIST Field Generation

When operating in HTM mode, the encoder does not generate messages for conditional branches.
Instead, it maintains a HIST register or accumulator to record the outcomes of these branches,
whether taken or not-taken. Each conditional branch contributes a single bit to the HIST register, as
follows:

• A bit with a value of 1 is appended at the least significant position for a taken conditional branch.

• A bit with a value of 0 is appended at the least significant position for a not-taken conditional
branch.

The HIST register may be implemented as a left-shift register. Initially, when the HIST register is
empty, bit 0 of the register is set to 1, with all other bits set to 0. Subsequent conditional branches
cause the register to shift left, recording each taken or not-taken outcome in bit 0.

Examples:

Binary(MSB-LSB):   101=0x5  (two direct conditional branches, not-taken and taken)
Binary(MSB-LSB):  1111=0xF  (three direct conditional branches, all three taken)
Binary(MSB-LSB): 10000=0x10 (four direct conditional branches, all four not-taken)
Binary(MSB-LSB):     1=0x1  (no direct conditional branches at all)

After transmission of the HIST field, the register is reset to its initial, empty state.

Decoders must initiate the interpretation of the HIST field starting from the second most significant
bit. The most significant bit, designated as the stop-bit, is invariably set to 1. This second most
significant bit—immediately following the stop-bit—encodes the outcome of the first conditional
branch captured in the HIST register. Conversely, the least significant bit represents the outcome of
the last conditional branch prior to the transmission of the HIST register.

8.2.1. HIST Field Full

The transition of the most significant bit in the HIST register from 0 to 1 indicates the register is full.
At this point, the entire register, including the most significant bit — which serves as the stop-bit — is
transmitted using a ResourceFull message with the RCODE field set to either 1 or 2.

When a HIST register is full and its value is the same as that of the HIST field transmitted in previous
ResourceFull message, then the encoder may increment an internal HREPEAT counter (history repeat
counter) instead of generating a ResourceFull message if the Repeated History Optimization is
enabled. See Repeated History Optimization chapter for further details.



Trace decoders do not have to be aware about the actual size of the HIST field
implemented by the encoder, however, to allow efficient implementation of trace encoders
(and allowing HIST pattern detection) this N-Trace specification limits HIST field size to
max 32-bits. Longer HIST fields would not provide much of a gain and would make
repeated HIST field detection more costly (in terms of hardware resources).
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8.3. I-CNT Details

The I-CNT field, present in most messages, transmits the value of the I-CNT counter, which counts the
number of halfwords used to encode retired instructions.

The I-CNT counter in the trace encoder is reset to 0, in accordance with the IEEE-5001 Nexus
Standard, under one of the following two conditions

• When tracing starts or is restarted for any reason.

• After the I-CNT counter value has been transmitted in a message.

Every retired instruction MUST increment I-CNT counter by 1 (for 16-bit instruction) or by 2 (for 32-
bit instruction). Specifically:

• If an instruction is explicitly changing the PC (as jump or return), that instruction itself MUST
update the I-CNT.

• Instructions that either raise exceptions or are interrupted prior to retirement do not increment
the I-CNT counter.


In case of longer instructions (48-bit, 64-bit, …) (future ISA standards or custom) I-CNT
may increment by 3 or more.

When I-CNT counter is full (reaches its maximum value or overflow bit is set) it can be reported in one
of two ways:

• By using a ResourceFull message with RCODE=0. This method is applicable to both BTM and
HTM.

• Optionally, by using a synchronizing message with SYNC=4 (Sequential Instruction Counter). It
may be only used in BTM mode.


Overflow bit allows efficient handling of cases, when single ingress port cycle reports
bigger I-CNT (several instructions retired). Reporting maximum value (exactly) is not
required and smaller or bigger value may be reported instead.

8.3.1. Example of I-CNT Handling in BTM mode

As an illustration, let’s consider the following piece of pseudo-code (specific operations are abstracted
as "…" as they do not matter for this example):

0x100:  c.add ...       ; 16-bit instruction
0x102:  b... 0x200      ; 32-bit instruction (direct conditional branch)
0x106:  add ...         ; 32-bit instruction
0x10A:  b... 0x300      ; 32-bit instruction (direct conditional branch)
0x10E:  c.add ...       ; 16-bit instruction
0x110:  add ...         ; 32-bit instruction
0x114:  c.ebreak        ; 16-bit breakpoint (to stop the code)
...
0x200:  c.add ...       ; 16-bit instruction
0x202:  c.ebreak        ; 16-bit breakpoint (to stop the code)
...
0x300:  add ...         ; 32-bit instruction
0x304:  c.ebreak        ; 16-bit breakpoint (to stop the code)


In the description below a range specified as <0x100..0x105> means that addresses

8.3. I-CNT Details | Page 36

RISC-V N-Trace (Nexus-based Trace) Specification | © RISC-V International



0x100 and 0x105 are both included in the address range.

Let’s assume we start a trace from address 0x100. The ProgTraceSync message with I-CNT=0 and F-
ADDR=0x80 (encoding an address 0x100) should be generated.

Let’s analyze a collected trace of above program (in BTM mode) executed three times (each time with
different flow).

1. First direct conditional branch at address 0x102 is taken.

◦ A DirectBranch message with I-CNT=3 should be generated. It means, that a code block from
<0x100..0x105> (as 6=2*3) was executed and a direct conditional branch at the end of this
block was taken. Decoder will know PC=0x200 from an opcode of the direct conditional
branch at an address 0x102.

◦ Next message should be ProgTraceCorrelation with I-CNT=1 describing range
<0x200..0x201> till C.EBREAK instruction

2. First direct conditional branch at address 0x102 is not taken and second direct conditional branch
at address 0x10A is taken.

◦ A DirectBranch message with I-CNT=7 should be generated. It means, that a code block from
<0x100..0x10D> (as 0xE=2*7) was executed and a direct conditional branch at the end of this
block was taken. Decoder will know PC=0x300 from an opcode of the direct conditional
branch at an address 0x10A.

◦ Next message should be ProgTraceCorrelation with I-CNT=2 describing a range
<0x300..0x303> till C.EBREAK instruction.

3. Both direct conditional branches (at 0x102 and 0x10A) are not taken.

◦ In this case only ProgTraceCorrelation with I-CNT=10 should be generated. It is describing a
range <0x100..0x113> (as 0x14=10*2) till C.EBREAK instructions.



Decoder must analyze every instruction in each code block being processed to know its
size. It cannot skip to the end of the block by calculating PC+I-CNT*2 as it is UNKNOWN
what is the size of the last instruction retired in that block. It may be (compressed) 16-bit
or 32-bit (not-compressed) direct conditional branch. Without knowing an instruction
size, the offset encoded in that direct conditional branch cannot be determined and the
next PC (after a branch) cannot be calculated.

Above we analyzed some I-CNT values. Let’s consider other I-CNT values.

• I-CNT=1 is a correct value.

◦ The only valid reason to generate a message with I-CNT=1 would be an exception (or interrupt)
at an instruction at address 0x102.

◦ In this case an encoder should generate an IndirectBranch or IndirectBranchSync message
with I-CNT=1, B-TYPE=1 (exception) and U-ADDR/F-ADDR field encoding an address of an
exception/interrupt handler.

• I-CNT=5 is also correct.

◦ It means that exception/interrupt happened before an instruction at an address 0x10A (after
instruction at 0x106).

• I-CNT=0 is also possible.

◦ It should be generated when an interrupt was pending before we started the code (and trace)
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and instruction at address 0x100 was not executed/retired.

◦ Another reason for I-CNT=0 may be a case, where instruction at address 0x100 will generate
page fault or is illegal.



• Values of I-CNT=4 or 6 or 9 are INCORRECT as it would mean that only half of
corresponding 32-bit instruction was executed/retired.

• Decoders must report such incorrect I-CNT values and immediately abandon the
decoding as it means that either an encoder is not conforming to this specification or
a trace was captured incorrectly.

• Decoding may resume at the next synchronizing message, but it is not mandatory for
all decoders to do so.

8.3.2. Example of I-CNT Handling in HTM mode

When the encoder is operating in HTM mode, I-CNT should be incremented at every retired
instruction the same way as for BTM mode. However direct conditional branches (from code piece
above …) will NOT generate any trace messages, but each of them will add a bit to the HIST field.

Example code (used to illustrate BTM trace) may generate messages with the following fields (for all
three runs):

1. First direct conditional branch at address 0x102 is taken.

◦ I-CNT=4, HIST=0x3 (0b1_1). Most significant bit=1 is stop bit, bit pattern '1' means that first
direct conditional branch was taken. Encoder should continue till an address 0x200 (as the
first direct conditional branch encountered was reported as taken) as I-CNT=3 describes a
<0x100..0x105> range. Remaining I-CNT=1 describes a <0x200..0x201> range.

2. First direct conditional branch at address 0x102 is not taken and second direct conditional branch
at address 0x10A is taken.

◦ I-CNT=9, HIST=0x5 (0b1_01). Most significant bit=1 is stop bit, bit pattern '01' means that
first direct conditional branch was not taken and second direct conditional branch was taken.
Encoder should continue till an address 0x300 (as the second direct conditional branch
encountered was reported as taken) as I-CNT=7 describes a <0x100..0x10D> range. Remaining
I-CNT=2 describes a <0x300..0x303> range.

3. Both direct conditional branches (at 0x102 and 0x10A) are not taken.

◦ I-CNT=10, HIST-0x4 (0b1_00). Most significant bit=1 is stop bit, bit pattern '00' means that
two direct conditional branches were not taken. Encoder should continue till an address 0x114
as I-CNT=10 describes a code in a <0x100..0x113> range.

8.3.3. Examples of I-CNT Field Full Generation

Let’s consider the following example code:

0x100:  c.add ...       ; 16-bit instruction
0x102:  b... 0x200      ; 32-bit instruction (direct conditional branch)
0x106:  add ...         ; 32-bit instruction
0x10A:  add ...         ; 32-bit instruction
0x10E:  add ...         ; 32-bit instruction
0x112:  add ...         ; 32-bit instruction
0x116:  add ...         ; 32-bit instruction
0x11A:  c.add ...       ; 16-bit instruction
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0x11C:  c.ebreak        ; 16-bit breakpoint (to stop the code)

and let’s assume (for simplicity) that the I-CNT counter is 4-bit wide (most significant bit being an
overflow flag) and that direct conditional branch at an address 0x102 is not taken (so code will run
from address 0x100 till breakpoint at address 0x11C).

Trace with Resource Full message (HTM mode shown):

• ProgTraceSync (start of trace)

◦ SYNC=3 (Exit from Debug Mode), I-CNT=0 (nothing executed as we are starting)

◦ F-ADDR=0x80 (encoding starting address 0x100)

• ResourceFull (I-CNT overflown to 9 at an address 0x112)

◦ RCODE=0 (I-CNT counter is full), RDATA[0]=9 (I-CNT value overflown value)

• ProgTraceCorrelation (describes entire <0x100..0x11C> range)

◦ EVCODE=0 (Entry into Debug Mode), CDF=1 (I-CNT and HIST fields follow)

◦ I-CNT=5 (see note below), HIST=0x2 (one not-taken direct conditional branch)

Trace with SYNC=Sequential Instruction Counter (BTM mode only):

• ProgTraceSync (start of trace)

◦ SYNC=3 (Exit from Debug Mode), I-CNT=0 (nothing executed as we are starting)

◦ F-ADDR=0x80 (encoding starting address 0x100)

• ProgramTraceSync (I-CNT overflown to 9 at an address 0x112)

◦ SYNC=4 (Sequential Instruction Counter), I-CNT=9 (see note below)

◦ F-ADDR=0x89 (encoding address 0x112)

• ProgTraceCorrelation (describes <0x112..0x11C> range)

◦ EVCODE=0 (Entry into Debug Mode), CDF=0 (only I-CNT field follows)

◦ I-CNT=5 (see note below)

Notes (for both trace options)

• Overflown I-CNT=9 (or RDATA[0]=9) field describes <0x100..0x112> range (18 bytes long).

• The I-CNT=5 field describes <0x112..0x11C> range (12 bytes long).

• In both cases total I-CNT is 9+5=14, what describes the entire <0x100..0x11C> range.

◦ Debug Mode is entered before C.EBREAK instruction (as it never retires), so C.EBREAK is
NOT included in I-CNT.

• Using ResourceFull generates smaller, more compressed trace.

◦ In real life examples it will allow generation of repeated history patterns and even better
trace compression.

• Using SYNC=Sequential Instruction Counter generates bigger trace (as potentially long F-
ADDR field is reported).
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8.4. Synchronizing Messages

Synchronizing messages are messages with a SYNC field. That field identifies the reason for
synchronization and such messages include the F-ADDR (full address) field to synchronize the PC
with the PC observed by the encoder.

All synchronizing messages MUST fully reset the encoder state, so decoding can be started from any of
synchronizing messages.



Trace requires different types of synchronization on different abstraction levels. Two major
categories of synchronization are:

• Instruction trace synchronization: allows the trace decoder to synchronize onto an
ongoing instruction trace stream. This is done via synchronizing messages, which are
described in this chapter in more detail.

• Message alignment synchronization: allows the trace decoder to detect the trace
message boundaries (i.e. start and end of a trace message) within a trace stream. This
kind of synchronization is not described in this chapter. It can be done via idle cycles,
and is described in the PIB Idle Cycles Explained chapter in more detail.

Table 25. SYNC Field Values

Value Name Required Description

0 External Trace
Trigger

No This message serves as a marker of external trigger. If trace is enabled by an external
trigger SYNC=5 should be used.

1 Exit from Reset No Core was reset without stopping (by watchdog for example). Address should be a reset
vector. The HIST and I-CNT may be used to determine the PC of the last instruction
retired before reset.

2 Periodic
Synchronization

Yes Just periodic instruction trace synchronization (to allow decoding the trace from the
middle or when circular RAM buffer was wrapped around overwriting part of earlier
trace). The interval for periodic instruction trace synchronization gets configured via
trTeInstSyncMode and trTeInstSyncMax.

3 Exit from Debug
Mode

Yes Very first synchronizing message after exit from debug mode. If trace is disabled (at
exit from debug more) no messages should be generated.

4 Sequential
Instruction
Counter

No Generated when I-CNT counter is full. See I-CNT Details chapter.

5 Trace Enable No Generated when trace is re-enabled after a gap caused by trace being disabled (e.g. due
to trace filters). This must not be used for exit from debug mode (in which case
SYNC=3 must be used).

6 Trace Event No Serves as a marker when debug watchpoint with action=4 triggered. See RISC-V Debug
Specification for watchpoint setting details.

7 Restart from
FIFO overrun

Yes First synchronization after a gap caused by an internal FIFO overun. Some trace
messages before this synchronization message were lost.

8 Reserved - For future standard use.

9 Exit from Power-
down

No When the hart is restarted after powered down. Similar to SYNC=1 (Exit from Reset)
described above.

10..13 Reserved - For future standard use.

14..15 Reserved - For vendor defined codes.

Decoders should report synchronization SYNC field values from messages (including reserved codes)
as it provides a reason for the program flow change.

8.4. Synchronizing Messages | Page 40

RISC-V N-Trace (Nexus-based Trace) Specification | © RISC-V International



• All synchronizing messages fully reset the encoder state, so decoding can be started from this
message.

◦ Before resetting the encoder state, the trace up to the current location must be emitted (it
includes HIST, I-CNT, HREPEAT and B-CNT counters).

• All synchronizing messages emit an absolute TSTAMP field (if enabled), so decoder may calculate
full/absolute timestamps from this message forward.

• An Ownership messages (if enabled) must be emitted immediately after all synchronizing
messages.

Periodic Synchronization are generated to allow easier decoding (not necessarily from the start of
collected trace) and may only be reported when desired by the user (for debugging).



Periodic Synchronization (SYNC=2) messages may not be precise and may be delayed if
any other SYNC message (for example Sequential Instruction Counter, SYNC=4) is sent. In
such a case, Periodic Synchronization may be even skipped as decoding may start from
any Synchronizing Message.

8.4.1. Examples of Synchronizing Messages

The following cases are created to help illustrate the type of N-trace synchronizing message generated
for different scenarios. Events which may occur while a hart is running or halted:

Case1: Enable/disable debug while tracing:

Case2: Enable trace while in debug:

8.4. Synchronizing Messages | Page 41

RISC-V N-Trace (Nexus-based Trace) Specification | © RISC-V International



Case3: Disable trace while in debug:

Case4: Sync trigger event (internal or external):

Case5: Enable and disable while in debug:

Case6: Periodic synchronization:

• First possibility provides choice of messages generated at exact periodic synchronization event P.

• Second provides a choice of messages which may be generated delayed after the periodic event P.

Superscript notes:

1. ProgramTraceSync message may be replaced with DirectBranchSync, IndirectBranchHistSync,
IndirectBranchHistSync.

2. ProgramTraceSync message may be generated for a SYNC event, however, HIST information will
not be reported. For HTM mode, the IndirectBranchHistSync or IndirectBranchSync message with
SYNC=6 (Trace Event) should be used to ensure no trace data is lost.

3. Next available …Branch… message upgraded to …Branch…Sync counterpart, so SYNC code is
reported.
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8.5. Timestamp Reporting

Timestamp reporting must be enabled by trTsEnable trace control bit.

If timestamp is enabled, all Synchronizing Messages include an absolute timestamp value with upper
zeroes suppressed. Other message types with timestamp emit the timestamp as relative offset from last
reported (absolute or relative) timestamp.


The TSTAMP field is a variable-length field, and most significant bits set to 0 will not be
transmitted. This approach provides good compression for both relative and absolute
timestamps.

To reconstruct the full timestamp, software begins at a synchronizing message and stores the TSTAMP
value found there, zero-extended to the full timestamp width. Shortly after starting a trace session,
even a 64-bit timestamp will typically require far less than 64 bits to transmit. Software extracts the
compressed TSTAMP from each message thereafter and adds it with the previous decompressed
timestamp to obtain the full timestamp value associated with this message.

The following rules must be observed:

• If timestamps are enabled, ALL Synchronizing Messages must include an absolute TSTAMP value.

• It is not required for all non-synchronizing messages to always report a timestamp. Doing so may
be opted for saving trace bandwidth or in the case of sending back-to-back messages.

• The absolute timestamp cannot exceed 64 bits (even with 1ps resolution, 64-bit counters will
overflow in about 584 years).

◦ Implementations may choose a smaller counter. Trace tools may assume timestamp will not
overflow in a single session, although adding support for overflow is not significantly
challenging.

• It is suggested that in multi-hart systems, all Trace Encoders use a shared timestamp (for better
trace correlation), but it is not mandatory.

• In all cases, when an address is provided, the timestamp should reflect the time when an event
leading to that address occurred.



If the above is not feasible, timestamps should be at least reported consistently, ensuring
that the time distance between distant events (for example, a periodic timer interrupt) can
be reliably calculated.

It is necessary to assure that the time reported at exceptions/interrupt handlers reflects
the moment when exception or interrupt was observed.

8.5. Timestamp Reporting | Page 43

RISC-V N-Trace (Nexus-based Trace) Specification | © RISC-V International



8.6. Corner Cases and Sequences

Normal program flow generates a sequence of messages with I-CNT>0 (reporting at least 1 instruction
retired), some HIST fields (to report direct conditional branches) and F-ADDR/U-ADDR fields (to
report uninferable unconditional flow changes).

However, sometimes normal flow is interrupted (by exception or interrupt) or some other extra event
(trigger/enable/disable) happens and sequence of messages or values of some fields may be a bit
unusual. Table below is trying to explain some corner cases.

Table 26. Corner Cases

Sequence of events Messages Generated

Back to back return Second message should have I-CNT=1 or 2 (depending on the size of the second return instruction).

Other back to back
jumps or branches

Same as above (depending on the size of a second instruction)

Back to back exceptions Second message with B-TYPE=2 or 1 (Exception) and I-CNT=0 (nothing executed in between).

Exception at interrupt
destination

Same as above.

Pending interrupt at
debug mode exit

ProgTraceSync with SYNC=3 followed by message with B-TYPE=3 or 1 (Interrupt).

Exception at first
instruction traced

ProgTraceSync with SYNC=3 followed by a message with B-TYPE=2 or 1 (Exception).

Trace starts disabled ProgTraceCorrelation with EVCODE=4 (Trace Disabled). Once trace is enabled message with
SYNC=5 (Trace Enable).

Hart halted with trace
disabled

ProgTraceCorrelation with EVCODE=0 (Enter Debug mode) and I-CNT=0 (nothing executed).

Exception/Interrupt
immediately following
trap return

Usual messages describing instructions up to return from trap (MRET/SRET) instruction.
Synchronizing message with an address of trap return with I-CNT=0 (as nothing executed after a
trap return).
Optionally, an Ownership messages describing privilege level after return from a trap.
Synchronizing message with an address of interrupt/exception handler and appropriate SYNC code.
Optionally, an Ownership messages describing privilege level of new exception/interrupt handler.
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Chapter 9. Optimization Extensions

N-Trace messages are defined as a strict subset of IEEE-5001 Nexus Standard messages. However, to
provide better compression some optional extensions are defined. Each of them should be by default
disabled and specifically enabled to allow simpler decoder to decode non fully optimized trace. Table
Details_Control_Parameters describes all control bits to enable these optimizations.

9.1. Sequential Jump Optimization

This optimization must be enabled by trTeInstEnSequentialJump control bit.

By default, the target of an indirect unconditional jump is always considered an uninferable PC
discontinuity. However, if the register that specifies the jump target was loaded with a constant then it
can be considered inferable under some circumstances. The hart must identify indirect unconditional
jumps with sequentially inferable targets and provide this information separately to the encoder. The
final decision as to whether to treat the indirect unconditional jump as inferable or not must be made
by the encoder. Both the constant load and the indirect unconditional jump must be traced as
consecutive instructions in the same message for the decoder to be able to infer the indirect
unconditional jump target.

Some jump targets that are supplied via:

• an LUI or C.LUI (a register which contains a constant), or

• an AUIPC (a register which contains a constant offset from the PC).

Such indirect unconditional jump targets are classified as sequentially inferable if the pair of
instructions are retired consecutively (i.e. the AUIPC, LUI or C.LUI immediately precedes the indirect
unconditional jump). When decoder is processing instructions (always forward) it must encounter the
AUIPC, LUI or C.LUI immediately directly before JR and then calculate target address of a jump. I-
CNT in that message must span over both (consecutive) instruction.



The restriction that the instructions must be retired consecutively is necessary to minimize
the additional signals needed between the hart and the encoder, and should have a
minimal impact on trace efficiency as it is anticipated that consecutive execution will be
the norm.
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9.2. Implicit Return Optimization

This optimization must be enabled by the trTeInstImplicitReturnMode control field different than 0.

Although a function return is usually an indirect unconditional jump, most programs return to the
point in the program from which the function was called using a standard calling convention. For
those programs, it is possible to determine the execution path without being explicitly notified of the
destination addresses of the returns. The implicit return mode can result in very significant
improvements in trace encoder efficiency.

Returns can only be treated as inferable if the associated call has already been reported in an earlier
message. The encoder must ensure that this is the case.

There are 3 possible ways of handling return address stack (values of trTeInstImplicitReturnMode
control field):

Simple counting (trTeInstImplicitReturnMode=1)

This can be accomplished by utilizing a counter to keep track of the number of nested calls being
traced. The counter increments on calls and decrements on returns. The counter will not over or
underflow, and is reset to 0 whenever a synchronizing message is sent. Returns will be treated as
inferable and will not generate a trace message if the count is non-zero (i.e. the associated call was
already reported in an earlier message). Such a scheme is low cost, and will work as long as programs
are "well behaved". The encoder will not be able to check that the return address is that of the
instruction following the associated call. As such, any program that modifies return addresses cannot
be traced using this mode with this minimal implementation. Due to these limitations this is NOT
recommended implementation.

Stack with Full Addresses (trTeInstImplicitReturnMode=3)

The encoder maintains a stack of expected return addresses (created when call is encountered), and
only treat a return as inferable if the actual return address matches the value on the stack. This is fully
robust for all programs but is more expensive to implement. In this case, if a return address does not
match the prediction, it must be reported explicitly via a message. This ensures that the decoder can
determine which return is being reported. This method may use shadow stack if implemented by the
core.

Stack with Partial Addresses (trTeInstImplicitReturnMode=2)

Call stack maintained by encoder may not include all addresses, but only keep some least significant
part of it and use them to compare if return is matching the call or not. Changes that program making
incorrect return will return to address with the same least significant portion are very slim.



Decoder does not need to know what actual depth of the call stack is implemented by
encoder but for efficiency reasons it should assume max depth. N-Trace implementation
should never implement call stack deeper than 32 levels. Such deep calls will be most likely
interrupted by other events/messages (like periodic SYNC).
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9.3. Repeated History Optimization

This optimization must be enabled by the trTeInstEnRepeatedHistory control bit.

A typical loop either has a direct conditional branch at the start of a loop (which must be typically
'taken' to terminate the loop) or has a direct conditional branch at the end of the loop (which must be
typically taken to repeat the loop). In the first case, the direct conditional branch is not taken most of
the time and taken once at the end. In the second case, the direct conditional branch is taken most of
the time, but not taken at the end of the loop.

Loops with many iterations such as those in functions like memcpy/strcpy have identical flow in each
iteraction. Instead of sending the same history bits many times, repeated patterns can be detected and
counted. This is a big saving! As an example, a memcpy of 4MB buffer using 32-bit transfers will
execute at least 1M of direct conditional branches and 1M of history bits must be included in trace (it is
a lot of trace).

The IEEE-5001 Nexus Standard defines a Repeat Branch message. This message will provide a single
B-CNT (Branch Count) field instead of generating many identical Direct Branch messages. But this
message cannot be used in HTM mode as repeated messages (Direct Branch) do not include the HIST
field.

To allow generation of repeated history of direct conditional branches in HTM mode an extra
encoding for RCODE=2 in Resource Full message is added.


It is allowed to generate any sequence of Resource Full messages as long as the logically
concatenated sequence of (repeated or not …) HIST bits (excluding most significant stop-
bit[s]) is the same.

Tracing of such simple, long loops would benefit from generating special messages/fields which
provide counters of taken/not-taken direct conditional branches (in a way like Repeat Branch
message)

But this approach will not work with more complex code with a conditional statement (or several of
them) inside of a loop.

In such a case, it is desired to detect repeated sequences of taken/not-taken direct conditional
branches and instead generate many messages with HIST fields, generate a message consisting of a
HIST pattern and repeat count.

Let’s assume that we have a loop, which generates a long sequence of repeated taken/not-taken direct
conditional branches. Trace may generate Resource Full messages with the following HIST records:

Msg#1:
    TCODE=27 (ResourceFull)
    RCODE=1 (full HIST record is provided as RDATA)
    RDATA=0b1_01_0101_0101_0101_0101_0101_0101_0101 = 0x55555555
            (stop-bit + pattern 01 repeated 15 times)
Msg#2:
    TCODE=27 (ResourceFull)
    RCODE=1 (full HIST record is provided as RDATA)
    RDATA=0b1_01_0101_0101_0101_0101_0101_0101_0101 = 0x55555555
            (stop-bit + pattern 01 repeated 15 times)
...
Msg#10:
    TCODE=27 (ResourceFull)
    RCODE=1 (full HIST record is provided as RDATA)
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    RDATA=0b1_01_0101_0101_0101_0101_0101_0101_0101 = 0x55555555
            (stop-bit + pattern 01 repeated 15 times)

Instead of generating many messages with identical HIST record, encoder can detect repeated pattern
and generate the following single message:

Msg#1:
    TCODE=27 (ResourceFull)
    RCODE=2 (full HIST record is provided as RDATA and
            repeat count is provided as HREPEAT field)
    RDATA=0b1_01_0101_0101_0101_0101_0101_0101_0101 = 0x55555555
            (stop-bit + pattern 01 repeated 15 times)
    HREPEAT=10  (Repeat Count=10 instead 10 messages)

Above example shows a 2-bit pattern, but using the same technique it can be expanded to any size of
pattern. The exact way to detect these patterns is not specified as it does not change encoding of
messages. So, it is possible to generate the following, a bit smaller, message:

Msg#1:
    TCODE=27 (ResourceFull)
    RCODE=2 (full HIST record is provided as RDATA and
            repeat count is provided as HREPEAT field)
    RDATA=0b1_01 = 0x5 (stop-bit + single pattern 01)
    HREPEAT=150 (Repeat Count is bigger, but pattern is smaller)



This type of compression (reporting shorter patterns and larger counts) may not be
practical as it may save only a little. Trace is compressed a lot already and it really should
not matter if we report 150 iterations of a loop in 6 or 7 bytes. Example above is provided
to assure that trace encoders must handle this type of trace compression.



When number of repeated branches is bigger than max HREPEAT counter value then
several consecutive messages with max HREPEAT value should be generated. Total count
represented by all these messages (sum of all HREPEAT fields) will be a number of
repeated branch history message.


HREPEAT counter should not have too many bits as it is not desired to not generate any
trace messages for longer periods of time. Bigger HREPEAT will not make compression
better but will produce timestamp rarely.
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9.4. Virtual Addresses Optimization

This optimization must be enabled by trTeInstExtendAddrMSB control bit.



Normally (without the above bit enabled or implemented), addresses with many most
significant bits set to 1 will be sent as long messages (as variable size fields skip only the
most significant 0-s). An address, 0xFFFF_FFFF_8000_31F4, a real address from the
Linux kernel, will be encoded as F-ADDR = 0x7FFF_FFFF_C000_18FA (with the least
significant 0-bit skipped). Such a 63-bit variable field value will require 11 bytes to be sent
(as we have 6 MDO bits in each byte).

The following additional rules are used when trTeInstExtendAddrMSB control bit is implemented and
set:

• The encoder may skip any number of most significant identical bits in the U-ADDR/F-ADDR
fields. However, it must ensure that if any bits are skipped, then the number of transmitted bits is a
multiple of the MDO size. Additionally, the most significant transmitted bit must have the same
value as the skipped bits.

• If F-ADDR/U-ADDR field is received by decoder, then the last (most significant) bit of the very last
MDO record must be extended up to bit#63 or bit#31 (depending on XLEN of the core). It is like
sign-extension, but it is NOT a sign bit.

• This method does NOT require a trace decoder to know what a virtual memory system mode is or
if an address is physical or virtual. The decoder must look at the most significant bit of the last
MDO in F-ADDR/U-ADDR field and either extend or not.

• Simple implementations may not implement an enable bit and always send full address. Benefits
of using it on 32-bit cores is small, so it may not be implemented.

This way of encoding allows an encoder to efficiently send:

• Any physical address.

• Any virtual address (in any mode).

• Any illegal address.

Trace encoder must implement a most significant bit detection (skipping identical 1-s or 0-s in
addition to skipping identical 0-s as for any other variable size field) while sending F-ADDR/U-ADDR
field. Trace decoders must do it in reverse order, which means that a sign extension (if needed) must
be done after collecting the last MDO bit in an F-ADDR/U-ADDR field. Calculation of full address (as
defined in Address Compression chapter above) must be done after sign extension of U-ADDR field.

Example Encodings

Non-extended address (most significant MDO bit = 0)

           MDO_MSEO
#byte:  543210        <- MDO bit index (bit#5 is most significant bit)
 -------------------
   #0:  111111_00
   #1:  111111_00
   #2:  111111_00
   #3:  111111_00
   #4:  111111_00
   #5:  011111_01     <- Last MDO+MSO byte. Most significant bit #5 is 0, so NO extension.
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                      F-ADDR field=0x7_FFFF_FFFF, Encoded address=0xF_FFFF_FFFE

Extended address (most significant MDO bit = 1)

           MDO_MSEO
#byte:  543210        <- MDO bit index (bit#5 is most significant bit)
 -------------------
   #0:  111111_00
   #1:  111111_00
   #2:  111111_00
   #3:  111111_00
   #4:  011111_00
   #5:  111100_01     <- Last MDO+MSEO byte. Most significant bit #5 is 1, so WITH extension.
                      F-ADDR field=0xF_1FFF_FFFF, Encoded address=0xFFFF_FFFE_3FFF_FFFE

Non-extended address (extra MDO with all 0-s prevents extension)

           MDO_MSEO
#byte:  543210        <- MDO bit index (bit#5 is most significant bit)
 -------------------
   #0:  111111_00
   #1:  111111_00
   #2:  111111_00
   #3:  111111_00
   #4:  111111_00
   #5:  111111_00
   #6:  000000_01     <- Last MDO+MSEO byte. Most significant bit #5 is 0, so NO extension.
                      F-ADDR field=0xF_FFFF_FFFF, Encoded address=0x1F_FFFF_FFFE

Non-extended full 64-bit address (invalid address)

           MDO_MSEO
#byte:  543210        <- MDO bit index (bit#5 is most significant bit)
 -------------------
   #0:  111111_00
   #1:  111111_00
   #2:  111111_00
   #3:  111111_00
   #4:  111111_00
   #5:  111111_00
   #6:  111111_00
   #7:  111111_00
   #8:  111111_00
   #9:  111111_00
  #10:  000101_01     <- Last MDO+MSEO byte. Most significant bit #5 is 0, so NO extension.
                      F-ADDR field=0x5FFF_FFFF_FFFF_FFFF, Encoded address=0xBFFF_FFFF_FFFF_FFFE


Address 0xBFFF_FFFF_FFFF_FFFF is NOT a legal address in any RISC-V virtual
memory modes as it does not have all most significant bits identical. But such an address
may be encountered as result of a bug and as such should be reported.
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Chapter 10. Rules of Generating Messages

This chapter explicitly addresses 16-bit and 32-bit instructions as defined in the currently ratified
RISC-V instruction set. Nonetheless, the guidelines provided herein are applicable to any instruction
size that is a multiple of 16-bit, should such instructions be defined in the future.

Main Rules

1. Inferable Instructions: This category includes instructions that do not perform control transfers
or are direct jumps. The subsequent program counter (PC) for these instructions can be
determined through static analysis of the binary code. Because these instructions exhibit a
predictable execution flow, they are termed "inferable," and no trace is generated for them.

2. Uninferable Instructions: This category comprises conditional branches and indirect jumps,
including return and indirect calls. Due to the unpredictability of the next PC as determined
through static analysis alone, uninferable instructions require trace.

3. Interrupts and Exceptions: Control flow changes caused by interrupts and exceptions necessitate
trace generation. These events alter the flow in an unpredictable manner, like uninferable
instructions, thereby requiring their occurrences to be traced.

Detailed Rules

1. If tracing is started (or restarted after it was disabled), a ProgTraceSync message is generated.

◦ This message specifies the reason for the start in the SYNC field and includes full address in
the F-ADDR field.

2. A retired 16-bit instruction increments the I-CNT counter by 1, while a retired 32-bit instruction
increments it by 2.

3. The following types of instructions allow trace decoders to determine the next PC and encoder
should not generate any trace for them.

◦ Instruction which is not control transfer instructions should advance PC to the next
instruction (increment by 2 or 4).

◦ Direct (inferable) unconditional jump should set next PC to jump destination (PC plus an
offset obtained from opcode).

◦ Not-taken direct conditional branch (in BTM mode) should advance PC to the next instruction
(increment by 2 or 4).

4. Indirect, unconditional jump instruction is handled as:

◦ In BTM mode, an IndirectBranch message is generated.

◦ In HTM mode, an IndirectBranchHist message is generated. Should the HIST field be empty,
an IndirectBranch message may optionally be generated instead.

5. Direct, conditional branch instruction is handled as:

◦ In BTM mode, a DirectBranch message is generated, but only if the branch is taken.

◦ In HTM mode, the outcome of the branch (1 for taken or 0 for not taken) is appended as a
single bit into the branch history buffer (HIST register).

6. When tracing is stopped or disabled, a ProgTraceCorrelation message is generated.

◦ This message included a reason for stopping or disabling (specified in the EVCODE field), the
I-CNT and an optional HIST field. These details allow for the calculation of the last PC.
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7. When a generated message includes I-CNT counter value or HIST register value, the
corresponding counter and/or register are reset.

◦ If the I-CNT counter is full, a ResourceFull message, indicating that I-CNT counter is full, is
generated. Subsequently, the I-CNT is reset.

◦ Similarily, if the HIST register reaches it capacity, a ResourceFull message, specifying that the
HIST register is full, is generated. The HIST register is then reset.

Extended Rules

These rules are augmenting the above rules if the corresponding configuration setting is set.

1. Call and return instructions may optionally be handled as described in the Implicit Return
Optimization chapter and may generate no trace.

2. By default, the target of an indirect unconditional jump is always considered an uninferable PC
discontinuity. However, if the register that specifies the jump target was loaded with a constant
then it can be considered inferable under some circumstances.

◦ Such instruction sequences may be detected and in such a case no trace is generated.

◦ This optional feature is described in detail in the Sequential Jump Optimization chapter.

10.1. Custom Instructions

Custom instructions (or any future ratified instructions) which are not changing PC flow do not
require any special treatment. Trace decoders should only look at instructions which may change PC
flow and for all other instructions only advance PC (+2 or +4).

Custom instruction which may change a PC (other than simple advance to next instruction) should be
traced in one of the following ways:

• If the PC just advances to the next instruction, it should only increment I-CNT. Decoder will just
advance the PC.

• If the program flow changes as result of a custom instruction, the custom instruction should be
traced as an indirect unconditional jump (even if it is not an indirect unconditional jump). That
way, the destination address will be reported (as F-ADDR or U-ADDR fields). Decoder will change
PC to an address specified in this message.

Such an approach will NOT require changes/adaptation in trace decoders. To illustrate this let’s
consider the following piece of code with custom instruction XYZ:

0x100:  add ...         ; 32-bit instruction
0x104:  XYZ             ; 32-bit instruction (custom conditional branch to 0x200 - it does not matter if
direct or indirect ...)
0x108:  c.add ...       ; 16-bit instruction
0x10A:  c.ebreak        ; 16-bit breakpoint (to stop the code)
...
0x200:  c.add ...       ; 16-bit instruction
0x202:  c.ebreak        ; 16-bit breakpoint (to stop the code)

It can be traced as follows (exact type of messages do not matter):

• Single message (if branch was not taken)

◦ I-CNT=5 ⇒ Instruction XYZ did not change the flow and code in range <0x100..0x10A) got

10.1. Custom Instructions | Page 52

RISC-V N-Trace (Nexus-based Trace) Specification | © RISC-V International



executed

• Two messages (if branch was taken)

◦ I-CNT=4, F-ADDR=0x100 (denote address 0x200) ⇒ Code in range <0x100..0x108) got
executed and next PC after instruction XYZ is 0x200

◦ I-CNT=1 ⇒ Code in range <0x200..0x202) got executed next


If custom instruction will generate some other trace (for example some new type of direct
conditional branch which may add HIST bit), decoders must be extended to be aware
about the type of this custom instruction.


If a custom instruction cannot be mapped into one of existing itype encodings, it may use
custom encoding. In such a case encoder (and decoder …) must be enhanced.

10.2. Pseudo-code of Simple N-Trace Encoder

Code below is a simplified part of actual C-code used by the reference encoder (in C). It defines two
functions:

• NTraceEncoderInit(void) - initialize state of encoder

• NTraceEncoderHandleRetired(uint64_t addr, uint32_t flags) - handle single retired instruction

◦ addr - address of retired instruction

◦ info - information about instruction (type, size, taken/not-taken)

// Use N-Trace TCODE messages
#define NEXUS_TCODE_Ownership                     2
#define NEXUS_TCODE_DirectBranch                  3
#define NEXUS_TCODE_IndirectBranch                4
#define NEXUS_TCODE_Error                         8
#define NEXUS_TCODE_ProgTraceSync                 9
#define NEXUS_TCODE_DirectBranchSync              11
#define NEXUS_TCODE_IndirectBranchSync            12
#define NEXUS_TCODE_ResourceFull                  27
#define NEXUS_TCODE_IndirectBranchHist            28
#define NEXUS_TCODE_IndirectBranchHistSync        29
#define NEXUS_TCODE_RepeatBranch                  30
#define NEXUS_TCODE_ProgTraceCorrelation          33

// Functions/macros which encode bits in 'info' (example...)
#define INFO_LINEAR   0x1   // Linear (plain instruction or not-taken BRANCH)
#define INFO_4        0x2   // If not 4, it must be 2 on RISC-V
#define INFO_INDIRECT 0x8   // Possible for most types above
#define INFO_BRANCH   0x10  // Always direct on RISC-V (may have LINEAR too)

#define InfoIsBranchTaken(info) (!((info) & INFO_LINEAR))
#define InfoIsSize32(info)      ((info) & INFO_4)
#define InfoIsBranch(info)      ((info) & INFO_BRANCH)
#define InfoIsIndirect(info)    ((info) & INFO_INDIRECT)

// Function which emit N-Trace messages (all are empty here)
void EmitFix(int nbits, uint32_t value);    // Emit fixed-size field
void EmitVar(uint64_t value);               // Emit variable size field
void EmitEnd();                             // Terminate message

// Encoder configuration options
const bool      enco_opt_branch_history = true;     // Configuration option
const uint32_t  enco_opt_limICNT    = 0x10000;      // Limit of ICNT (max is 6+6+4 bits)
const uint32_t  enco_opt_limHIST    = 0x40000000;   // Limit of HIST (max is 5*6 bits)
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// Encoder state variables
static uint32_t encoNextEmit = 0;   // TCODE to be emitted next time
static uint32_t encoICNT = 0;       // ICNT accumulated
static uint32_t encoHIST = 1;       // HIST accumulated (most significant bit is guardian bit)
static uint64_t encoADDR = 0;       // Last emitted address

void NTraceEncoderInit()
{
    encoADDR = 0;
    encoICNT = 0;   // Empty ICNT and HIST
    encoHIST = 1;

    encoNextEmit = NEXUS_TCODE_ProgTraceSync;
}

void NTraceEncoderHandleRetired(uint64_t addr, uint32_t info)
{
    // Optionally emit what was determined previously
    if (encoNextEmit != 0)
    {
        EmitFix(6, encoNextEmit);   // Emit TCODE (as determined)

        // Emit message fields (accordingly ...)
        if (encoNextEmit == NEXUS_TCODE_ProgTraceSync)
        {
            EmitFix(4, 1);          // Emit SYNC=1  (4-bit)
            EmitVar(encoICNT);      // Emit ICNT    (variable)
            EmitVar(addr >> 1);     // Emit FADDR   (variable)
        }
        else if (encoNextEmit == NEXUS_TCODE_IndirectBranchHist ||
                 encoNextEmit == NEXUS_TCODE_IndirectBranch)
        {
            EmitFix(2, 0);                      // Emit BTYPE=0 (2-bit)
            EmitVar(encoICNT);                  // Emit ICNT    (variable)
            EmitVar((encoADDR ^ addr) >> 1);    // Emit UADDR   (variable)

            if (encoNextEmit == NEXUS_TCODE_IndirectBranchHist)
            {
                EmitVar(encoHIST);              // Emit HIST    (variable)
            }
        }
        else if (encoNextEmit == NEXUS_TCODE_DirectBranch)
        {
            EmitVar(encoICNT);                  // Emit ICNT    (variable)
        }

        EmitEnd();  // It will mark last entry with MSEO=11 and flush it

        if (encoNextEmit != NEXUS_TCODE_DirectBranch)
        {
            encoADDR = addr;  // This is new address
        }
        encoNextEmit = 0;   // Only one time

        encoICNT = 0;       // Start from 'empty' ICNT and HIST
        encoHIST = 1;
    }

    // Update ICNT
    uint32_t prevICNT = encoICNT;   // In case ICNT will overflow now, we need to emit previous value ...
    if (InfoIsSize32(info)) encoICNT += 2; else encoICNT += 1;

    // Determine type of message (only if this is branch or indirect ...)
    if (InfoIsBranch(info))
    {
        if (enco_opt_branch_history)
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        {
            // Update branch history buffer (add least significant bit)
            if (InfoIsBranchTaken(info))
                encoHIST = (encoHIST << 1) | 0; // Mark branch as taken
            else
                encoHIST = (encoHIST << 1) | 1; // Mark branch as not-taken
        }
        else
        {
            if (InfoIsBranchTaken(info))
                encoNextEmit = NEXUS_TCODE_DirectBranch;    // Emit destination address (next retired)
            else
                ;   // Not-taken branch is considered as linear instruction
        }
    }
    else
    if (InfoIsIndirect(info))
    {
        if (enco_opt_branch_history)
            encoNextEmit = NEXUS_TCODE_IndirectBranchHist;  // Emit destination address (next retired)
        else
            encoNextEmit = NEXUS_TCODE_IndirectBranch;      // Emit destination address (next retired)
    }

    // Optionally emit ICNT full
    if (encoICNT > enco_opt_limICNT) // Instruction count overflown?
    {
        // Emit ResourceFull with ICNT before this instruction
        EmitFix(6, NEXUS_TCODE_ResourceFull);
        EmitFix(4, 0);                          // RCODE=0 (ICNT full)
        EmitVar(prevICNT);                      // RDATA=ICNT (before overflown)
        EmitEnd();  // It will mark last entry with MSEO=11 and flush it

        // Set ICNT for this instruction
        if (InfoIsSize32(info)) encoICNT = 2; else encoICNT = 1;
    }

    // Optionally emit HIST full
    if (encoHIST & enco_opt_limHIST) // Is HIST buffer overflown?
    {
        // Emit history BEFORE this instruction (remove least significant bit)
        EmitFix(6, NEXUS_TCODE_ResourceFull);
        EmitFix(4, 1);                          // RCODE=1 (HIST full)
        EmitVar(encoHIST >> 1);                 // RDATA=HIST (before overflown)
        EmitEnd();  // It will mark last entry with MSEO=11 and flush it

        // Keep single HIST for this branch (guardian | single least significant bit from encoHIST)
        encoHIST = (0x1 << 1) | (encoHIST & 0x1);
    }
}
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Chapter 11. N-Trace Decoding Guidelines

To reconstruct the program control flow using the N-Trace encoded stream of messages (as any other
compressed trace) access to opcodes of instructions which were executed is necessary. This is usually
done by providing an ELF file of a program being executed, but it can also be read-out from the target.
Three types of information are needed:

1. Size of each instruction (16-bit or 32-bit).

2. Types of all instructions (corresponding to 'itype' signal on trace ingress port - based on analysis of
opcodes).

3. For direct unconditional jumps and direct conditional branches an offset (to jump/branch
destination) encoded in an opcode.

Decoding must start from a synchronizing message. The synchronizing message provides the
complete PC in the F-ADDR field. Transfers relative to this PC may then be inferred using subsequent
messages till a new PC is transmitted in a subsequent synchronizing message


To provide partial decoding of big trace, messages with F-ADDR are transmitted
periodically. Periodic F-ADDR transmission is also needed to decode trace from small,
circular buffers.

11.1. Decoding Algorithm Principles

To reconstruct the control flow of the program from N-Trace messages do the following:

• Copy HIST and I-CNT fields (if available) to corresponding registers.

• Handle HIST register (while not empty):

◦ Analyze code from the current PC through direct (inferable) unconditional jumps (all types)
and direct conditional branches (each direct conditional branch will 'consume' a single bit
from the HIST register).

◦ Each encountered instruction should subtract 1 or 2 (INST_LEN/16) from I-CNT (depending
on the size of that instruction).

◦ At the end (after the least significant bit from HIST is processed), the PC will be of the
instruction executed after the last conditional branch (either taken or not-taken).

• Handle I-CNT register (while greater than 0x0):

◦ Analyze code from current PC through direct (inferable) unconditional jumps (all types) - each
encountered direct conditional branch must be treated as not-taken.

◦ Each encountered instruction should subtract 1 or 2 (INST_LEN/16) from I-CNT (depending
on the size of that instruction).

• It will reach either indirect, unconditional jump or I-CNT will become 0 to denote that some other
'event' (like exception, interrupt, trace off, trigger etc.) happened.

◦ In BTM mode, direct conditional branch may be reached as last instruction. Next PC should be
the destination address of that taken branch.

• At the last step the F-ADDR or U-ADDR field (if available) should be applied.

◦ This is either a destination address of indirect unconditional jump or an address of an
exception/interrupt handler.

◦ This will be the next PC where analysis of the next trace message should start.
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• Handle the B-CNT or RCODE fields by repeating processing of the fields from previous trace
message.



• Phrase inferable unconditional jumps (all types) include indirect unconditional
jumps, which may be inferable.

• Extra fields like SYNC/B-TYPE only provide extra details, but are NOT essential for a
decoder to reconstruct the PC flow.

• See N-Trace Reference Code for simple but fully functional implementation.

11.2. Decoding trace from multiple harts

Decoder assigned to a specific hart should process only those messages tagged with a SRC value
corresponding to that hart. To facilitate this, all encoders operating within the same trace stream must
configure the trTeSrcBits field identically to ensure a consistent source identifier bit width, and must
each be assigned a unique trTeSrcID field value. This arrangement ensures that messages can be
accurately attributed to their originating hart, allowing for precise and isolated trace analysis per hart.

11.3. Decoding trace of operating systems

In case of complex operating systems (Linux etc.), where code consists of several independently built
programs and libraries, decoders must be aware of different program images (e.g., ELF files) at
different locations. Ownership messages should provide enough context. Decoders must be also aware
of assignment of scontext/hcontext values for programs and processes being traced.

Operating systems may decide to migrate single process to different cores/harts. It may also be the
case, when different threads from the same process (sharing code …) will run in the same time on more
than one core/hart.

11.4. Decoding self-modifying or JIT (Just In Time compiled) code

Trace encoder is just encoding a stream of instructions passed by ingress port from the hart running it,
but decoder must be aware of types of all instructions being executed. In case of self-modifying code
(or JIT code), binary image (at moment of execution) must be available to decoder. How this can be
done is not in the scope of this specification.
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Chapter 12. IEEE-5001 Nexus Standard Compliance

The IEEE-5001 Nexus Standard provides a lot of flexibility and in general N-Trace can be considered
fully compatible. There is one incompatible, small change:

• Field ECODE is variable-length field (to assure TSTAMP field is on byte boundary).

Several compatible extensions are described in preceding chapters and are marked with Extension:
marker. Each of them is disabled by default and must be directly enabled.

Chapter 12. IEEE-5001 Nexus Standard Compliance | Page 58

RISC-V N-Trace (Nexus-based Trace) Specification | © RISC-V International



Chapter 13. Additional Material

Trace Bandwidth Considerations

SRC field (if enabled) may change the otherwise optimal layout of Fields in Messages.

Validation Considerations

ResourceFull message with I-CNT full is rare and may not be experienced in normal code. Simplest
way to generate is to have an infinite loop and (rare) interrupt handler. This loop should increment a
register or memory location - this value should correspond to total accumulated I-CNT.

Potential Future Enhancements

Table below is proposing some future enhancements for N-Trace messages. These were discussed
during the development of the N-Trace specification.

Table 27. Future Enhancements

Enhancement Conformance Notes

Instrumentation
Data Trace

Nexus Compatible Very likely (Nexus defines appropriate messages). It will require software to be
instrumented by code sending data using trace infrastructure (Arm CoreSight ITM
enabled many use-cases).

Selective Data Trace Nexus Compatible Very likely (Nexus defines appropriate messages). It will allow sending some data
in response to triggers (from debug module or external).

Full Data Trace Nexus Compatible Likely (E-Trace supports it), but necessary bandwidth may be a problem.

Smaller field sizes Nexus Extension Unlikely (too much of a change). Some of the fields may be made shorter (as not all
cases are needed), but it may not be justified.

System Bus Trace Nexus Compatible Likely (Nexus defines appropriate messages and there is a need for more than trace
of harts).

Additional TCODE Nexus Extension Possible, but more real-life examples are needed to justify it.

Single MSEO bit Nexus Compatible Unlikely to be considered. It may provide (12.5% instead of 25% MSEO overhead),
but it is more complex to handle by both encoder and decoders.

More MDO bits Nexus Compatible Very unlikely to be considered. To keep byte alignment, 14 or 22 or 30-bit MDO
may be considered. Even 14-bit will cause a lot of 'wasted' bits.


Each of the above enhancements should be first prototyped and validated using reference
C encoder/decoder.
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