
RISC-V Trace Control Interface
Specification

RISC-V N-Trace Task Group

Version 1.0_rc42, July 22, 2024: Stable state (waiting for Freeze)

Table of Contents

Preamble . 1
Change Log . 2

Version 1.0_rc42. 2
Copyright and license information . 3
Contributors . 4
1. Introduction . 5

1.1. Glossary. 5
2. Trace Protocols and Trace Control . 7
3. Trace System Overview. 8

3.1. Trace Encoder . 8
3.1.1. Branch Trace Messaging . 8
3.1.2. Branch History Messaging . 8
3.1.3. Other Optimizations . 8

3.2. Trace Sinks . 8
3.2.1. SRAM Sink . 9
3.2.2. System Memory Sink . 9
3.2.3. PIB Sink. 9

3.3. ATB Bridge . 9
3.4. Trace Funnel . 9

4. Trace Control Interface Overview . 10
4.1. Trace Components . 10

4.1.1. Connections Between Components . 10
4.1.2. Example Component Connection Diagrams . 11

4.2. Accessing Trace Control Registers. 13
4.3. Trace Component Register Map. 13

4.3.1. Summary of Trace Encoder Registers . 14
4.3.2. Summary of Trace RAM Sink Registers. 15
4.3.3. Summary of Trace PIB Sink Registers . 15
4.3.4. Summary of Trace Funnel Registers. 15
4.3.5. Summary of Trace ATB Bridge Registers . 16

5. Versioning of Components. 17
6. Trace Encoder Control Interface . 18

6.1. Timestamp Unit . 22
6.2. Trace Encoder Triggers . 24

6.2.1. Debug Trigger Module . 24
6.2.2. External Trace Triggers . 25
6.2.3. Triggers Precedence . 25

6.3. Trace Encoder Filter Registers. 26
7. Trace RAM Sink . 31

7.1. Accessing and Detecting RAM Sink Registers . 34
8. Trace Funnel . 36

8.1. Timestamp Unit . 36
9. Trace PIB Sink . 37

9.1. Order of bits and bytes . 38
9.2. PIB Parallel Protocol . 39

9.2.1. PIB Clock Center. 39
9.3. SWT Manchester Protocol . 40
9.4. SWT UART Protocol . 40
9.5. Calibration Mode . 41

10. Trace ATB Bridge . 42
11. Additional Material. 43

11.1. Minimal Implementation . 43
11.2. Reset and Discovery . 45
11.3. Enabling and Disabling . 47
11.4. Pre-ratified/Initial Interface Version . 48

Preamble


This document is in the Stable state

Change is extremely unlikely.

Preamble | Page 1

RISC-V Trace Control Interface Specification | © RISC-V International

http://riscv.org/spec-state

Change Log

PDF generated on: 2024-07-23 04:51:32 UTC

Version 1.0_rc42

• 2024-07-22

◦ ARC approved - waiting for official Freeze sig-off

Version 1.0_rc42 | Page 2

RISC-V Trace Control Interface Specification | © RISC-V International

Copyright and license information

This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-
BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/

Copyright 2019-2024 by RISC-V International.

Copyright and license information | Page 3

RISC-V Trace Control Interface Specification | © RISC-V International

https://creativecommons.org/licenses/by/4.0/

Contributors

Key contributors to RISC-V Trace Control Interface specification in alphabetical order:

Bruce Ableidinger (SiFive) ⇒ Initial SiFive donation, reviews
Robert Chyla (IAR, SiFive, MIPS) ⇒ Most topics, editing, publishing
Ernie Edgar (SiFive) ⇒ Initial SiFive donation, reviews
Jay Gamoneda (NXP) ⇒ Reviews, editing and updating after ARC review
Markus Goehrle (Lauterbach) ⇒ Reviews, updates
Iain Robertson (UltraSoC, Siemens) ⇒ E-Trace compatibility, filtering chapter, reviews
Ved Shanbhogue (Rivos) ⇒ Detailed Architecture Review Committee notes
Nino Vidovic (Segger) ⇒ Reviews

Contributors | Page 4

RISC-V Trace Control Interface Specification | © RISC-V International

Chapter 1. Introduction

This document presents a standardized control interface for RISC-V trace infrastructure (such as trace
encoders, trace funnels, trace sinks, …) for the Efficient Trace for RISC-V Version 2.0 Specification and for
the RISC-V N-Trace (Nexus-based Trace) Specification Version 1.0.0. Standardized control interface
allows trace control software development tools to be used interchangeably with any RISC-V device
implementing processor and/or data trace.

Instruction Trace is a system that collects a history of processor execution, along with other events.
The trace system may be set up and controlled using a register-based interface. Hart execution activity
appears on the Ingress Port and feeds into a Trace Encoder where it is compressed and formatted into
trace messages. The Trace Encoder transmits trace messages to a Trace Sink. In multi-core systems,
each hart has its own Trace Encoder, and typically all will connect to a Trace Funnel that aggregates
the trace data from multiple sources and sends the data to a single destination.

This specification does not define the hardware interconnection between the hart and Trace Encoder,
as this is defined in the Efficient Trace for RISC-V Specification Version 2.0. This document also does not
define the hardware interconnection between the Trace Encoder and Trace Funnel, or between the
Trace Encoder/Funnel and Trace Sink.

This specification allows a wide range of implementations including low-gate-count minimal
instruction trace and systems with only instrumentation trace. Implementation choices include
whether to support instruction trace, data trace, instrumentation trace, timestamps, external triggers,
various trace sink types, and various optimization tradeoffs between gate count, features, and
bandwidth requirements.

1.1. Glossary

Trace Encoder (TE for short) - Hardware module that accepts execution information from a hart and
generates a stream of trace messages/packets.

Trace Message/Packet - Depending on protocol different names can be used, but it means the same. It
is considered as a continuous sequence of (usually bytes) describing program and/or data flow and
other events.

Trace Funnel - Hardware module that combines trace streams from multiple trace sources (Trace
Encoders and/or other Trace Funnels) into a single output stream of trace messages/packets.

Trace Sink - Hardware module that accepts a stream of trace messages/packets and records them into
the memory or forwards them onward in some format.

Trace Decoder - Software program that takes a recorded trace (from a Trace Sink) and produces a
readable execution history.

RO - Denotes read-only bit/field - it does not mean it will return the same value each time when read.

RW - Denotes read-write bit/field - value being read may not be the same as what was written as some
fields may change their values because of other reasons.

RW1C - Denotes bit/field, which can be read but you must write 1 to clear it (writing 0 will be ignored).
It is used for sticky status bits to assure that these are cleared by deliberate action (write 1).

WARL - Denotes Write any, read legal bit/field/register. If a non-legal value is written, the written
value is converted to a value that is supported. That value should deterministically depend on the

1.1. Glossary | Page 5

RISC-V Trace Control Interface Specification | © RISC-V International

illegal written value and the architectural state of the trace sub-system.

W1 - Denotes write-only bit, which performs an action when 1 is written to it.

SD - Reset value of a field/register is system dependent - these fields should always have the same
values at trace component reset. In many cases this may be the only value supported.

Undef - This field/register may not reset. Trace tool must write correct value before enabling the trace
component.

ATB - Advanced Trace Bus, a protocol described in ARM document AMBA ATB Protocol Specification.
This is one of alternative methods to send the trace (in addition to native Trace Sinks defined in this
specification).

PIB - Pin Interface Block, a parallel or serial off-chip trace port feeding into a trace probe.

?? - Used in names refer to identical fields/registers in different components. For example tr??Active
may mean trTeActive or trTsActive.

1.1. Glossary | Page 6

RISC-V Trace Control Interface Specification | © RISC-V International

Chapter 2. Trace Protocols and Trace Control

There are two standard RISC-V trace protocols which will utilize this RISC-V Trace Control Interface:

• RISC-V N-Trace (Nexus-based Trace) Specification

◦ Version 1.0 to be ratified together with this specification.

• Efficient Trace for RISC-V Specification

◦ Version 2.0 (ratified May 5-th 2022).

This specification together with details provided in any of above documents should be considered as a
complete guideline for any standard RISC-V trace implementation.

Trace is controlled by set of 32-bit memory-mapped registers.

Not all trace protocols and components must support all registers, bits, fields and options. This
document includes a chapter Minimal Implementation which describes the smallest possible set of
registers and fields, but each message protocol supported by this standard must clarify the exact
meaning of supported registers/fields and bits as some of them define.

Chapter 2. Trace Protocols and Trace Control | Page 7

RISC-V Trace Control Interface Specification | © RISC-V International

Chapter 3. Trace System Overview

This section briefly describes features of the Trace Encoder and other trace components as
background for understanding some of the control interface register fields.

3.1. Trace Encoder

By monitoring the Ingress Port, the Trace Encoder determines when a program flow discontinuity has
occurred and whether the discontinuity is inferable or non-inferable. An inferable discontinuity is one
for which the Trace Decoder can statically determine the destination, such as a direct branch
instruction in which the destination or offset is included in the opcode. Non-inferable discontinuities
include all other types such as interrupts, exceptions, and indirect jump instructions.

3.1.1. Branch Trace Messaging

Branch Trace Messaging is the simplest, baseline form of instruction trace. Each program counter
discontinuity results in one trace message, either a Direct or Indirect Branch Message. Linear
instructions (or sequences of linear instructions) do not directly generate any trace messages/packets
but overflow of counters (or exceptions) may generate corresponding packets/messages - these
messages are infrequent and will not affect trace compression.

Indirect Branch Messages normally contain a compressed address to reduce bandwidth. The Trace
Encoder emits a Branch With Sync Message containing the complete instruction address under
certain conditions. This message type is a variant of the Direct or Indirect Branch Message and
includes a full address and a field indicating the reason for the Sync.

3.1.2. Branch History Messaging

Both the Efficient Trace for RISC-V (E-Trace) Specification and the RISC-V N-Trace (Nexus-based
Trace) specification define systems of messages intended to improve compression by reporting only
whether conditional branches are taken by encoding each branch outcome in a single taken/not-taken
bit. The destinations of non-inferable jumps and calls are reported as compressed addresses. Much
better optimized compression can be achieved, but an encoder implementation will typically require
more hardware.

3.1.3. Other Optimizations

Several other optimizations are possible to improve trace compression. These are optional for any
Trace Encoder and there should be a way to disable optimizations in case the trace system is used with
code that does not follow recommended API rules. Examples of optimizations are a Return-address
stack, Branch repetition, Statically inferable jump, and Branch prediction.

3.2. Trace Sinks

The Trace Encoder transmits completed messages to a Trace Sink. This specification defines a number
of different sink types, all optional, and allows an implementation to define other sink types. A Trace
Encoder must have at least one sink or funnel attached to it.


Trace messages/packets are sequences of bytes. In case of wider sink width, some
padding/idle bytes (or additional formatting) may be added by the sink. N-Trace format
allows any number of idle bytes between messages.

3.1. Trace Encoder | Page 8

RISC-V Trace Control Interface Specification | © RISC-V International

3.2.1. SRAM Sink

The Trace Encoder packs trace messages into fixed-width trace words (usually bytes). These are then
stored in a dedicated RAM, typically located on-chip, in a circular-buffer fashion. When the RAM has
filled, it may optionally be stopped, or it may wrap and overwrite earlier trace data.

3.2.2. System Memory Sink

The Trace Encoder packs trace messages into fixed-width trace words (usually bytes). These are then
stored in a range of system memory reserved for trace using a DMA-type bus controller in a circular-
buffer fashion. When the memory range has been filled, it may optionally be stopped, or it may wrap
and overwrite earlier trace data. This type of sink may also be used to transmit trace off-chip through,
for example, a PCIe or USB port.

3.2.3. PIB Sink

The Trace Encoder sends trace messages to the PIB Sink. Each message is transmitted off-chip (as
sequence of bytes) using a specific protocol described later.

3.3. ATB Bridge

The ATB Bridge allows sending RISC-V trace to Arm CoreSight infrastructure (instead of RISC-V
compliant sink defined in this document) as an ATB initiator. ATB Bridge is not needed for RISC-V
only systems.

ATB width is byte aligned (8, 16, 32, 64, 128) which allows transport of trace messages/packets defined
as sequence of bytes.

3.4. Trace Funnel

The Trace Encoder may send trace messages to a Trace Funnel. The Funnel aggregates the trace from
each of its inputs (either RISC-V Trace Encoder or another Trace Funnel) and sends the combined
trace stream to its designated Trace Sink or ATB Bridge, which is one or more of the sink types above.


It is assumed that each input to the funnel (Trace Encoder or another Trace Funnel) has a
unique message source ID defined (trTeSrcID field in the trTeControl register).

3.3. ATB Bridge | Page 9

RISC-V Trace Control Interface Specification | © RISC-V International

Chapter 4. Trace Control Interface Overview

The Trace Control interface consists of a set of 32-bit registers. The control interface can be used to set
up and control a trace session, retrieve collected trace, and control any trace system components.

4.1. Trace Components

Each Trace Component is controlled by a set of 32-bit registers occupying up to 4KB of an address
space. Base address of each trace component must be aligned on the 4KB boundary.

Each hart being traced must have its own separate Trace Encoder control component. A system with
multiple harts must allow generating messages with a field indicating which hart is responsible for
that message.

This specification defines the following trace components (N in at the end of symbol name denotes 0-
based index of the component)

Table 1. Trace Components

Component Name Component Type (value=symbol) Base Address (symbol #N)

Trace Encoder 0x1=TRCOMP_ENCODER trBaseEncoderN

Trace Funnel 0x8=TRCOMP_FUNNEL trBaseFunnelN

Trace RAM Sink 0x9=TRCOMP_RAMSINK trBaseRamSinkN

Trace PIB Sink 0xA=TRCOMP_PIBSINK trBasePibSinkN

Trace ATB Bridge 0xE=TRCOMP_ATBBRIDGE trBaseAtbBridgeN



This specification does NOT address the discovery of base addresses of trace components.
These base addresses (symbols in above table) must be specified as part of trace tool
configuration. Connections between different trace components must be also defined.
Future versions of this specification may allow a single base address to be sufficient to
access and discover all trace components in the system.

4.1.1. Connections Between Components

Different components must be connected via internal busses and/or FIFO buffers. This specification
does not define this interconnect logic, but the following rules must be followed:

• Each component sending a trace message/packet must assure the entire packet can be accepted by
the destination component (or pushed into the FIFO buffer).

◦ Sending a partial packet is NEVER allowed as it will not be possible to process and decode such
a trace.

• If a component cannot send an entire message/packet it must wait until it is possible to do so.

• Tracing is typically required to be non-intrusive, and if the Trace Encoder cannot keep up with the
hart it should drop the packet and wait for the receiver to be ready.

◦ Once trace is allowed to resume it must issue an instruction trace synchronization
message/packet so the decoder will be aware that some (unknown) amount of trace has been
lost.

◦ It is advisable to drain the trace pipeline to some hysteresis level before resuming - otherwise a
lot of short chunks of trace may be produced.

• Optionally the Trace Encoder may be configured to stall the hart to avoid trace data loss.

4.1. Trace Components | Page 10

RISC-V Trace Control Interface Specification | © RISC-V International

• To prevent trace overflows the following techniques can be used:

◦ Add a FIFO capable of holding several trace messages/packets to mitigate bursts of trace data.

◦ Use wider internal busses to provide more bandwidth.

◦ Make sure funnels and sinks provide the same or more bandwidth than encoders.

◦ Use triggers to create trace windows/ranges to limit amount of trace data - especially in multi-
core configurations.

Table 2. Allowed Connections Between Components

Input Output Description

Ingress Port Trace Encoder Ingress Port (from hart) providing raw trace to be encoded

Trace Encoder Trace RAM Sink Single hart tracing to RAM buffer

Trace Encoder Trace PIB Sink Single hart tracing via pins

Trace Encoder Trace ATB Bridge Single hart tracing to Arm ATB infrastructure

Trace Encoder Trace Funnel Sending trace from single hart to Trace Funnel (to be combined from other RISC-V
trace)

Trace Funnel Trace Funnel Sending combined trace from multiple harts to higher level Trace Funnel (to be
combined from other RISC-V trace)

Trace Funnel Trace RAM Sink Sending combined trace from multiple harts to RAM buffer

Trace Funnel Trace PIB Sink Sending combined trace from multiple harts via pins

Trace Funnel Trace ATB Bridge Sending combined trace from multiple harts to Arm ATB infrastructure

Trace ATB Bridge Arm ATB bus Sending trace to ATB (to combine RISC-V trace with other Arm components on the
system)



Sending RISC-V trace to Arm CoreSight infrastructure is allowed (via ATB Bridge), but this
specification does not specify how to transport trace data from other Arm CoreSight
components in the system using RISC-V Trace sub-system. One of possible ways of doing
so would be to create a custom trace component, configure it to encapsulate it as custom
N-Trace trace messages and connect it as input to one of trace funnels.

4.1.2. Example Component Connection Diagrams

Figure 1. Simplest trace: Single Hart, Trace Encoder and Trace Sink/Bridge

4.1. Trace Components | Page 11

RISC-V Trace Control Interface Specification | © RISC-V International

Figure 2. Multi-hart trace: Three harts, three Encoders, single Funnel and single Sink/Bridge

Figure 3. Multi-cluster trace: two three-hart clusters with top-level Funnel and Sink/Bridge

Figure 4. Local RAM Sink: Three-hart cluster plus extra hart with own RAM Sink (in SRAM mode)


Trace data from Trace Encoder #4 may be combined with trace from other 3 Trace
Encoders. But it may be also sent to dedicated Trace RAM Sink - in such a case

4.1. Trace Components | Page 12

RISC-V Trace Control Interface Specification | © RISC-V International

corresponding input to Trace Funnel (top) should be disabled.

4.2. Accessing Trace Control Registers

For the access method to the trace control registers, it makes a difference whether these registers shall
be accessed by an external debug/trace tool, or by an internal debugger running on the chip.

Trace control register access by an external debugger (this is the most common use case):

• External debuggers must be able to access all trace control registers independent of whether the
traced harts are running or halted. That is why for external debuggers, the recommended access
method for memory-mapped control registers is memory accesses through the RISC-V debug
module using SBA (System Bus Access) as defined in the RISC-V Debug Specification.

Trace control register access by an internal debugger:

• Through loads and stores performed by one or more harts in the system. Mapping the control
interface into physical memory accessible from a hart allows that hart to manage a trace session
independently from an external debugger. A hart may act as an internal debugger or may act in
cooperation with an external debugger. Two possible use models are collecting crash information
in the field and modifying trace collection parameters during execution. If a system has physical
memory protection (PMP), a range can be configured to restrict access to the trace system from
hart(s).



Additional control path(s) may also be implemented, such as extra JTAG registers or
devices, a dedicated DMI debug bus or message-passing network. Such an access (which
is NOT based on System Bus) may require custom implementation by trace probe vendors
as this specification only mandates probe vendors to provide access via SBA commands.

4.3. Trace Component Register Map

Each block of 32-bit registers (for each component) has the following layout:

Table 3. Register Layout for Component

Address Offset Register Name Compliance Description

0x000 tr??Control Required Main control register for this trace component

0x004 tr??Impl Required Trace Implementation information for this trace component

0x008 - 0x00F extra controls Optional Extra controls for this trace component (named differently)

0x010 - 0xDFF  —  Optional Additional registers (specific for the type of a component). All
not used registers are reserved and should read as 0 and
ignore writes.

0xE00 - 0xFFF  —  Optional Registers reserved for implementation/vendor specific details.
May allow identification of components on a system bus.


Each component has a tr??Active bit in the tr??Control register. Accesses to other
registers are unspecified when the tr??Active bit is 0.

Each trace component has a tr??Impl register (at address offset 0x4) allowing trace component version
and trace component type to be identified. This register allows debug tools to confirm the component
type and potentially adjust tool behavior by looking at component versions.


Each component may have a different version. Initial version of this specification defines

4.2. Accessing Trace Control Registers | Page 13

RISC-V Trace Control Interface Specification | © RISC-V International

all components to specify component version as 1.0 (major=1, minor=0).

Registers in the 4KB range that are not implemented are reserved and read as 0 and ignore writes.

Most trace control registers are optional. Some WARL fields may be hard coded to any value
(including 0). It allows different implementations to provide different functionality.

Both N-Trace and E-Trace encoders are controlled by the same set of bits/fields in the same trTe???
registers - as almost every register, field, bit is optional this provides good flexibility in
implementation.

All other trace components are shared between different trace encoders (N-Trace and E-Trace).

4.3.1. Summary of Trace Encoder Registers

Table 4. Trace Encoder Registers (trTe??, trTs??)

Address Offset Register Name Compliance Description

0x000 trTeControl Required Trace Encoder control register

0x004 trTeImpl Required Trace Encoder implementation information

0x008 trTeInstFeatures Optional Extra instruction trace encoder features and trace source IDs

0x00C trTeInstFilters Optional Mask of filters to qualify an instruction trace

Data trace control (trTeData??)

0x010 trTeDataControl Optional Data trace control and features

0x014 - 0x018  —  Reserved Reserved for data trace related future standard extension

0x01C trTeDataFilters Optional Mask of filters to qualify data trace

Reserved

0x020 - 0x03F  —  Reserved Reserved for future standard extension

Timestamp control (trTs??)

0x040 trTsControl Optional Timestamp control register

0x044  —  Reserved Reserved for future timestamp related standard extension

0x048 trTsCounterLow Optional Lower 32 bits of timestamp counter

0x04C trTsCounterHigh Optional Upper bits of timestamp counter

Trigger control (trTeTrig??)

0x050 trTeTrigDbgControl Optional Debug Triggers control register

0x054 trTeTrigExtInControl Optional External Triggers Input control register

0x058 trTeTrigExtOutControl Optional External Triggers Output control register

Reserved

0x060 - 0x3FF  —  Reserved Reserved for future standard extension

Filters & comparators (trTeFilter??, trTeComp??)

0x400 - 0x5FF trTeFilter?? Optional Trace Encoder Filter Registers

0x600 - 0x7FF trTeComp?? Optional Trace Encoder Comparator Registers

4.3. Trace Component Register Map | Page 14

RISC-V Trace Control Interface Specification | © RISC-V International

4.3.2. Summary of Trace RAM Sink Registers

Table 5. Trace RAM Sink Registers (trRam??)

Address Offset Register Name Compliance Description

0x000 trRamControl Required RAM Sink control register

0x004 trRamImpl Required RAM Sink Implementation information

0x008 - 0x00F  —  Reserved Reserved for more control registers

0x010 trRamStartLow Required Lower 32 bits of start address of circular trace buffer

0x014 trRamStartHigh Optional Upper bits of start address of circular trace buffer

0x018 trRamLimitLow Required Lower 32 bits of end address of circular trace buffer

0x01C trRamLimitHigh Optional Upper bits of end address of circular trace buffer

0x020 trRamWPLow Required Lower 32 bits of current write location for trace data in
circular buffer

0x024 trRamWPHigh Optional Upper bits of current write location for trace data in circular
buffer

0x028 trRamRPLow Optional Lower 32 bits of access pointer for trace readback

0x02C trRamRPHigh Optional Upper bits of access pointer for trace readback

0x030 - 0x03F  —  Reserved Reserved for more control registers

0x040 trRamData Optional Read/write access to SRAM trace memory (32-bit data)

4.3.3. Summary of Trace PIB Sink Registers

Table 6. Trace PIB Sink Registers (trPib??)

Address Offset Register Name Compliance Description

0x000 trPibControl Required Trace PIB Sink control register

0x004 trPibImpl Required Trace PIB Sink Implementation information

4.3.4. Summary of Trace Funnel Registers

Table 7. Trace Funnel Registers (trFunnel??, trTs??)

Address Offset Register Name Compliance Description

0x000 trFunnelControl Required Trace Funnel control register

0x004 trFunnelImpl Required Trace Funnel Implementation information

0x008 trFunnelDisInput Optional Disable individual funnel inputs

0x00C - 0x03F  —  Reserved Reserved for more control registers

Timestamp control (trTs??)

0x040 trTsControl Optional Timestamp control register

0x044  —  Reserved Reserved for extra timestamp control

0x048 trTsCounterLow Optional Lower 32 bits of timestamp counter

0x04C trTsCounterHigh Optional Upper bits of timestamp counter


Funnels may optionally be a source of timestamp and/or forward timestamp to Trace
Encoders in the system. This way several Trace Encoders may share timestamp and trace
from several harts may be time-correlated.

4.3. Trace Component Register Map | Page 15

RISC-V Trace Control Interface Specification | © RISC-V International

4.3.5. Summary of Trace ATB Bridge Registers

Table 8. Trace ATB Bridge Registers (trAtbBridge??)

Address Offset Register Name Compliance Description

0x000 trAtbBridgeControl Required Trace ATB Bridge control register

0x004 trAtbBridgeImpl Required Trace ATB Bridge Implementation information

4.3. Trace Component Register Map | Page 16

RISC-V Trace Control Interface Specification | © RISC-V International

Chapter 5. Versioning of Components

Each component has a tr??Impl register, which includes two 4-bit tr??VerMinor and tr??VerMajor
fields. These fields are guaranteed to be present in all future revisions of a standard, so trace tools will
be able to discover a component version and act accordingly.

• Value 0 as tr??VerMajor is NOT allowed (due to compatibility reasons).

• Different components may report different versions (as some components may be updated more
often than others).

• The major version tr??VerMajor field is incremented when the modification breaks backward
compatibility.

• The minor version tr??VerMinor field is incremented when the modification maintains backward
compatibility (for example adding a new field) - for that reason software should always write 0 to
reserved bits in registers.

• Version 15.x is reserved for non-compatible version encoding.

• Version n.15 should be used as experimental (in development) implementation.

Software tools must report the version number as two decimal numbers major.minor - initial version of
this specification is defined as 1.0.



Trace software should handle versions as follows (let’s assume hypothetical version 2.3
was defined as current version in moment of release of trace software)

• 0.x ⇒ Reject as not supported or generate a warning and handle as pre-
ratified/initial version 0.

• 2.3 ⇒ Accept silently.

• 2.2 ⇒ Accept silently (and trim features or not allow users to set newer features).

• 2.4 ⇒ Generate a warning but continue using 2.3 features.

• 2.15 ⇒ Generate an "experimental version" warning but continue using 2.3 features.

• 1.x ⇒ Generate a warning and continue or reject as an obsolete (referring to last
debugger supporting this version).

• 3.x ⇒ Generate a fatal error that this future version is not compatible with existing
software and possibly redirect to the tool update page.

Displayed messages should report component name, component base address and current
and supported version numbers. It is suggested to display the full hexadecimal value of
tr??Impl register as it may aid in debugging of possibly incorrect/incompatible
component configuration.

Chapter 5. Versioning of Components | Page 17

RISC-V Trace Control Interface Specification | © RISC-V International

Chapter 6. Trace Encoder Control Interface

Many features of the Trace Encoder (TE for short) are optional. In most cases, optional features are
enabled using a WARL (write any, read legal) register field. A debugger can determine if optional
feature is present by writing to the register field and reading back the result.

Table 9. Register: trTeControl: Trace Encoder Control Register (trBaseEncoder+0x000)

Bit Field Description RW Reset

0 trTeActive Primary activate/reset bit for the TE. When 0, the TE may have clocks
gated off or be powered down, and other register locations may be
inaccessible. Hardware may take an arbitrarily long time to process
power-up and power-down and will indicate completion when the
read value of this bit matches what was written. See Reset and
Discovery chapter for more details.

RW 0

1 trTeEnable 1: Trace Encoder is enabled. Allows trTeInstTracing and
trTeDataTracing to turn tracing on and off. Setting trTeEnable to 0
flushes any queued trace data to the sink or funnel attached to this
encoder. This bit can be set to 1 only by direct writing to it. This write
of 1 should be done after all other settings are done. See Enabling and
Disabling chapter for more details.

RW 0

2 trTeInstTracing 1: Instruction trace is being generated. Written from a trace tool (after
a write to trTeEnable) or controlled by triggers. When
trTeInstTracing=1, instruction trace data may be subject to additional
filtering in some implementations (additional trTeInstMode settings).

RW Undef

3 trTeEmpty Reads as 1 when all generated trace have been emitted. RO 1

6:4 trTeInstMode Instruction trace generation mode
0: Full Instruction trace is disabled, but other trace (data trace) may be
emitted.
1-2: Protocol defined trace mode.
3: Baseline instruction trace (for example Branch Trace).
4-5: Protocol defined trace mode.
6: Optimized instruction trace (for example Branch History Trace).
7: Reserved for vendor-defined instruction trace mode.
NOTE: When non-supported mode (different then 0) is set, it cannot
revert to 0 but MUST revert to supported non-0 mode.

WARL Undef

8:7  —  Reserved  —  0

9 trTeContext Enable sending trace messages/fields with scontext/mcontext values
and/or privilege levels.

WARL Undef

10  —  Reserved  —  0

11 trTeInstTrigEnable 1: Allows trTeInstTracing to be set or cleared by Trace-on and Trace-
off signals generated by the corresponding trigger module.

WARL Undef

12 trTeInstStallOrOverflow Set to 1 by hardware when trace buffer overflow (also known as trace
lost) occurs, or when the TE requests a hart stall. Clears to 0 at TE
reset or when the trace is enabled (trTeEnable set to 1). Write 1 to clear.

RW1C Undef

13 trTeInstStallEna 0: If TE cannot send a message, the message is dropped. The protocol
dependent overflow instruction trace synchronization message/packet
is generated when the trace is restarted, so the decoder will know that
trace is lost and must reset any internal decoder state.
1: If TE cannot send a message, the hart is stalled until it can. With this
option execution of instructions by the hart may be intrusively
affected, but in many cases it is acceptable.

WARL Undef

14  —  Reserved  —  0

15 trTeInhibitSrc 0: Messages/packets generated by the trace encoder include a message
source field if the source width held in trTeSrcBits is not 0.
1: Disable inclusion of source field in trace messages/packets.

WARL Undef

Chapter 6. Trace Encoder Control Interface | Page 18

RISC-V Trace Control Interface Specification | © RISC-V International

Bit Field Description RW Reset

17:16 trTeInstSyncMode Select the periodic instruction trace synchronization message/packet
generation mechanism. At least one non-zero mechanism must be
implemented.
0: Off
1: Count trace messages/packets
2: Count hart clock cycles
3: Count instruction 16-bit half-words
Once the max value of periodic counter is reached, an instruction
trace synchronization message/packet should be generated.

WARL Undef

19:18  —  Reserved  —  0

23:20 trTeInstSyncMax The maximum interval (in units determined by trTeInstSyncMode)
between instruction trace synchronization messages/packets.
Generate synchronization when count reaches 2^(trTeInstSyncMax+4).
If an instruction trace synchronization message/packet is generated
for another reason, the internal counter should be reset.

WARL Undef

26:24 trTeFormat Trace recording/protocol format:
0: Format defined by Efficient Trace for RISC-V (E-Trace)
Specification
1: Format defined by RISC-V N-Trace (Nexus-based Trace)
Specification
2-6: Reserved for future formats
7: Vendor-specific format

WARL Undef

31:27  —  Reserved  —  0


Writing to this register while trace is enabled may unintentionally change a value of
trTeInstTracing bit because that bit may dynamically change by triggers.

Table 10. Register: trTeImpl: Trace Encoder Implementation Register (trBaseEncoder+0x004)

Bit Field Description RW Reset

3:0 trTeVerMajor Trace Encoder Component Major Version. Value 1 means the
component is compliant with this document. Value 0 means pre-
ratified/initial version - see 'Pre-ratified/Initial Interface Version'
chapter at the end.

RO 1

7:4 trTeVerMinor Trace Encoder Component Minor Version. Value 0 means the
component is compliant with this document.

RO 0

11:8 trTeCompType Trace Encoder Component Type (Trace Encoder) RO 0x1

15:12  —  Reserved for future versions of this standard  —  0

19:16 trTeProtocolMajor Trace Protocol Major Version. As specified by specification governing
trTeFormat.

RO SD

23:20 trTeProtocolMinor Trace Protocol Minor Version. As specified by specification governing
trTeFormat.

RO SD

31:24  —  Reserved for vendor specific implementation details  —  SD


trTeProtocol?? fields are separated from trTeVer?? as we may have the same control
interface, but protocol itself may be extended with new packets/ messages/ fields.

Table 11. Register: trTeInstFeatures: Trace Instruction Features Register (trBaseEncoder+0x008)

Bit Field Description RW Reset

0 trTeInstNoAddrDiff When set, trace messages/packets always carry a full address. WARL Undef

1 trTeInstNoTrapAddr When set, do not include trap handler address in trap
messages/packets.

WARL Undef

Chapter 6. Trace Encoder Control Interface | Page 19

RISC-V Trace Control Interface Specification | © RISC-V International

Bit Field Description RW Reset

2 trTeInstEnSequentialJump When set, treat sequentially inferrable jumps as inferable PC
discontinuities.

WARL Undef

3 trTeInstEnImplicitReturn When set, treat returns as inferable PC discontinuities when returning
from a recent call on a stack. Field trTeInstImplicitReturnMode below
provides more details.

WARL Undef

4 trTeInstEnBranchPrediction When set, Branch Predictor based compression is enabled. WARL Undef

5 trTeInstEnJumpTargetCache When set, Jump Target Cache based compression is enabled. WARL Undef

7:6 trTeInstImplicitReturnMode Defines how the decoder is handling stack of return addresses (if
enabled by trTeInstEnImplicitReturn bit):
0: Implicit Return mode is not supported, or implementation is not
reporting how it is implemented.
1: Simple level counting without the return address comparing.
2: Partial (LSB portion of return address) compare (smaller logic cost
than 3 below, but in most cases adequate as chances to have an
incorrect return address with same LSB bits is very slim).
3: Full address comparing (always assures skipped return addresses
are the same as addresses deducted from call instruction).
Implementation may take advantage of RAS (Return Address Stack) if
implemented by the hart.

WARL Undef

8 trTeInstEnRepeatedHistory Enable repeated branch history/map detection when set. WARL Undef

9 trTeInstEnAllJumps Enable emitting of trace message or add history/map bit for direct
unconditional/inferable control flow changes (jumps or calls).
Normally these instructions do not generate any trace as the decoder
can determine the next instruction. Trace will not compress well but
timestamp accuracy will be better - may be used when profiling loops.

WARL Undef

10 trTeInstExtendAddrMSB When set, allow extended handing of MSB address bits. Encoding
details are trace protocol dependent.

WARL Undef

15:11  —  Reserved for additional instruction trace control/status bits  —  0

27:16 trTeSrcID Trace source ID assigned to this trace encoder. If trTeSrcBits is not 0
and trace source is not disabled by trTeInhibitSrc, then trace
messages from this TE will all include a trace source field of
trTeSrcBits bits and all messages from this TE will use this value as
trace source field.

WARL Undef

31:28 trTeSrcBits The number of bits in the trace source field (0..12), unless disabled by
trTeInhibitSrc. Some trace protocols may require that this field is
identical for all enabled trace encoders within the same trace stream.

WARL Undef


Applicability of different trTeInst?? fields for each trace encoding protocol is described in
a document which defines the protocol (and not all fields are applicable to all protocols).

Table 12. Register: trTeInstFilters: Trace Instruction Filters Register (trBaseEncoder+0x00C)

Bit Field Description RW Reset

15:0 trTeInstFilters Determine which filters defined in Trace Encoder Filter Registers
chapter qualify an instruction trace. If bit n is a 1 then instructions
will be traced when filter n matches. If all bits are 0, all instructions
are traced.

WARL Undef

31:16  —  Reserved  —  0

Chapter 6. Trace Encoder Control Interface | Page 20

RISC-V Trace Control Interface Specification | © RISC-V International

Table 13. Register: trTeDataControl: Data Trace Control Register (trBaseEncoder+0x010)

Bit Field Description RW Reset

0 trTeDataImplemented Read as 1 if data trace is implemented. RO SD

1 trTeDataTracing 1: Data trace is being generated. Written from a trace tool or controlled
by triggers. When trTeDataTracing=1, data trace may be subject to
additional filtering in some implementations.

WARL Undef

2 trTeDataTrigEnable Global enable/disable for data trace triggers WARL Undef

3 trTeDataStallOrOverflow Set to 1 by hardware when data trace causes trace buffer overflow, or
when the TE requests a hart stall due to data trace. Clears to 0 at TE
reset or when the trace is enabled (trTeEnable set to 1). Write 1 to clear.

RW1C Undef

4 trTeDataStallEna 0: If TE cannot send data trace messages, an overflow message is
generated when the trace is restarted.
1: If TE cannot send data trace messages, the hart is stalled until it can.

WARL Undef

5 trTeDataDrop Written to 1 by hardware when the data trace packet was dropped (if
enabled). Clears to 0 at TE reset or when the trace is enabled
(trTeEnable set to 1). Write 1 to clear.

RW1C Undef

6 trTeDataDropEna 1: Allow temporary suppression of data trace (at some watermark
level) to prevent trace overflow or stall. This way instruction trace will
have higher priority.

WARL Undef

15:7  —  Reserved for additional data trace control/status bits.  —  0

16 trTeDataNoValue When set, omit data values from data trace packets. WARL Undef

17 trTeDataNoAddr When set, omit data address from data trace packets. WARL Undef

19:18 trTeDataAddrCompress Data trace address compression selection:
0: Only send full (unmodified) addresses
1: Use XOR compression
2: Use differential compression
3: Protocol defined address compression

WARL Undef

31:20  —  Reserved  —  0


Writing to this register while trace is enabled may unintentionally change a value of
trTeDataTracing bit because that bit may dynamically change by triggers.


Applicability of different trTeData?? fields for each trace encoding protocol is described in
a document which defines the protocol (and not all fields are applicable to all protocols).

Table 14. Register: trTeDataFilters: Trace Data Filters Register (trBaseEncoder+0x01C)

Bit Field Description RW Reset

15:0 trTeDataFilters Determine which filters defined in Trace Encoder Filter Registers
chapter qualify data trace. If bit n is a 1 then data accessed will be
traced when filter n matches. If all bits are 0, all data accesses are
traced.

WARL Undef

31:16  —  Reserved  —  0

Chapter 6. Trace Encoder Control Interface | Page 21

RISC-V Trace Control Interface Specification | © RISC-V International

6.1. Timestamp Unit

Timestamp Unit is an optional sub-component present in either Trace Encoder or Trace Funnel. An
implementation may choose from several modes of timestamps:

• Internal System - fixed clock in a system (such as bus clock) is used to increment the timestamp
counter (for both Trace Encoders and Trace Funnels)

• Internal Core - core clock is used to increment the timestamp counter (only for Trace Encoders)

• Shared - shares timestamp with another Trace Encoder or Trace Funnel

• External - accepts a binary timestamp value from an outside source such as ARM CoreSight™
trace (for both Trace Encoders and Trace Funnels)

Implementations may have no timestamp, one timestamp mode, or more than one mode. The WARL
field trTsMode is used to determine the system capability and to set the desired timestamp mode.

The width of the timestamp is implementation dependent, typically 40 or 48 bits (40-bit timestamp
will overflow every 4.7 minutes assuming 1GHz timestamp clock).

In a system with Funnels, typically all the Funnels are built with a Timestamp Unit. The top-level
Funnel is the source of the timestamp (Internal System or External) and all the Encoders and other
Funnels have a Shared timestamp. This assures that all timestamps in the system are the same and
trace from different harts may be time-correlated. To perform the forwarding function, the mid-level
Funnels must be programmed with trFunnelActive = 1 (which is natural as all trace messages must
pass through that funnel).

An Internal System or Core timestamp unit may include a timestamp clock pre-scaler divider, which
can extend the range of a narrower timestamp and uses less power but has less resolution.

In a system with an Internal Core timestamp counter (implemented in Trace Encoder associated with
a hart) an optional control bit is provided to stop the counter when the hart is halted by a debugger.

Table 15. Register: trBaseEncoder/Funnel+0x040 trTsControl: Timestamp Control Register

Bit Field Description RW Reset

0 trTsActive Primary activate/reset bit for timestamp unit. This must either be RW
or, if separated reset for timestamp component is not implemented, a
read-only copy of the corresponding trTeActive or trFunnelActive bit.
See Reset and Discovery chapter for more details.

WARL SD

1 trTsCount Internal System or Core timestamp only.
1: counter runs,
0: counter stopped.

WARL Undef

2 trTsReset Internal System or Core timestamp only.
Write 1 to reset the timestamp counter.

W1  — 

3 trTsRunInDebug Internal Core timestamp only.
1: counter runs when hart is halted (in debug mode),
0: stopped

WARL Undef

6:4 trTsMode Mode used by Timestamp unit:
0: None
1: External
2: Internal System
3: Internal Core
4: Shared
5-7: Vendor-specific mode

WARL Undef

7  —  Reserved  —  0

6.1. Timestamp Unit | Page 22

RISC-V Trace Control Interface Specification | © RISC-V International

Bit Field Description RW Reset

9:8 trTsPrescale Internal System or Core timestamp only.
Prescale timestamp input clock by 2^(2*trTsPrescale). It will be
divided by 1, 4, 16, 64 respectively.

WARL Undef

14:10  —  Reserved  —  0

15 trTsEnable Enable for timestamp field in trace messages/packets (for Trace
Encoder only).

WARL Undef

23:16 Vendor-specific bits to control what message/packet types include
timestamp fields.

WARL Undef

29:24 trTsWidth Width of timestamp in bits (0..63) RO SD

31:30  —  Reserved  —  0

Table 16. Register: trTsCounterLow: Timestamp Counter Lower Bits (trBaseEncoder/Funnel+0x048)

Bit Field Description RW Reset

31:0 trTsCounterLow Lower 32 bits of timestamp counter. RO 0

Table 17. Register: trTsCounterHigh: Timestamp Counter Upper Bits (trBaseEncoder/Funnel+0x04C)

Bit Field Description RW Reset

31:0 trTsCounterHigh Upper bits of timestamp counter, zero-extended. RO 0

6.1. Timestamp Unit | Page 23

RISC-V Trace Control Interface Specification | © RISC-V International

6.2. Trace Encoder Triggers

6.2.1. Debug Trigger Module

Debug module triggers are signals from the hart that a trigger was hit, but the action associated with
that trigger is a trace-related action. Action identifiers 2-5 are reserved for trace actions in the RISC-V
Debug Specification, where triggers are defined. Actions 2-4 are defined by the Efficient Trace for
RISC-V (E-Trace) Specification. The desired action is written to the action field of the Match Control
mcontrol CSR (0x7a1). As not all harts may support all trace actions, the debugger should read back the
mcontrol CSR after setting the desired trace action to verify that the option exists.

Table 18. Debug Trigger Actions

Trigger Action (from debug spec) Effect

0 Breakpoint exception (as defined in RISC-V Debug Specification)

1 Debug exception (as defined in RISC-V Debug Specification)

2 Trace-on action
When trTeInstTrigEnable = 1 it will start instruction tracing (trTeInstTracing → 1).
When trTeDataTrigEnable = 1 it will start data tracing (trTeDataTracing → 1).

3 Trace-off action
When trTeInstTrigEnable = 1 it will stop instruction tracing (trTeInstTracing → 0).
When trTeDataTrigEnable = 1 it will stop data tracing (trTeDataTracing → 0).

4 Trace-notify action
If tracing is active (trTeInstTracing = 1), then the encoder generates a packet with the
current PC and, if enabled, a timestamp.

5 Vendor-specific trace action (optional)

If there are vendor-specific features that require control, the trTeTrigDbgControl register is used.

Table 19. Register: trTeTrigDbgControl: Debug Trigger Control Register (trBaseEncoder+0x050)

Bit Field Description RW Reset

31:0 trTeTrigDbgControl Vendor-specific trigger setup WARL Undef

6.2. Trace Encoder Triggers | Page 24

RISC-V Trace Control Interface Specification | © RISC-V International

6.2.2. External Trace Triggers

The TE may be configured with up to 8 external trigger inputs for controlling trace. These are in
addition to the external triggers present in the Debug Module when Halt Groups are implemented.
The specific hardware signals comprising an external trigger are implementation dependent.

External Trigger Outputs may also be present. A trigger out may be generated by trace starting, trace
stopping, a watchpoint, or by other system-specific events.

Table 20. Register: trTeTrigExtInControl: External Trigger Input Control Register
(trBaseEncoder+0x054)

Bit Field Description RW Reset

3:0 trTeTrigExtInAction0 Select action to perform when external trigger input #0 fires. If
external trigger input #0 does not exist, then its action is fixed at 0.
0: No action
1: Reserved
2: Trace-on action
When trTeInstTrigEnable = 1 it will start instruction tracing
(trTeInstTracing → 1).
When trTeDataTrigEnable = 1 it will start data tracing (trTeDataTracing
→ 1).
3: Trace-off action
When trTeInstTrigEnable = 1 it will stop instruction tracing
(trTeInstTracing → 0).
When trTeDataTrigEnable = 1 it will stop data tracing (trTeDataTracing
→ 0).
4: Trace-notify action
If tracing is active (trTeInstTracing = 1), then the encoder generates a
packet with the current PC and, if enabled, a timestamp.
5-15: Reserved

WARL Undef

31:4 trTeTrigExtInActionN Select actions (as defined for bits 3-0) for external trigger input #N
(1..7). If an external trigger input does not exist, then its action is fixed
at 0.

WARL Undef

Table 21. Register: trTeTrigExtOutControl: External Trigger Output Control Register
(trBaseEncoder+0x058)

Bit Field Description RW Reset

3:0 trTeTrigExtOutEvent0 Bitmap to select which event(s) cause external trigger #0 output to
fire. If external trigger output #0 does not exist, then all bits are fixed
at 0. Bits 2 and 3 may be fixed at 0 if the corresponding feature is not
implemented.
Bit 0:
Start trace transition (trTeInstTracing 0 → 1) will fire the trigger.
Bit 1:
Stop trace transition (trTeInstTracing 1 → 0) will fire the trigger.
Bit 2-3:
Vendor-specific event (optional)

WARL Undef

31:4 trTeTrigExtOutEventN Select events for external trigger output #N (1..7). If an external trigger
output does not exist, then its event bits are fixed at 0

WARL Undef

6.2.3. Triggers Precedence

It is implementation dependent what happens when triggers (from debug module or external) with
conflicting actions occur simultaneously (signaled at the same ingress port cycle) or if triggers occur
too frequently. It is recommended that tracing starts from the oldest instruction retired in the cycle
that Trace-on is asserted, and stops following the newest instruction retired in the cycle that Trace-off
is asserted.

6.2. Trace Encoder Triggers | Page 25

RISC-V Trace Control Interface Specification | © RISC-V International

6.3. Trace Encoder Filter Registers

All registers with offsets 0x400 .. 0x7FC are designated for additional trace encoder filter options
(context, addresses, modes, etc.).

Trace encoder filters are an optional feature that can be used to control the generated trace in various
ways.

The registers below divide the filter logic into filters and comparators to provide maximum flexibility
at low cost. The number of filters and comparators depends on the system. Each filter unit can specify
filtering against instruction and optionally against data trace inputs from the hart. When filter i is
implemented, the registers trTeFilteriControl and trTeInstFilters must be implemented to enable it.
And to apply filter i to the data trace, the trTeDataFilters register must also be present. And if a match
bit in the trTeFilteriControl register can be set to 1 (= enabling a filter option), the corresponding
register from the bit’s description must have a correct value already set as otherwise the trigger may
fire unintentionally. Each of the mentioned comparator units is a pair of comparators (primary and
secondary, or P and S), so a limited range can be matched with a single comparator unit if needed.
Each enabled filter define independent condition where trace is enabled - if several filters are enabled
they act as logical OR. Several conditions for single filter act as logical AND.


Filter and comparator registers refer to values of some signals (as priv, itype, ecause,
dtype, dsize, …) available on Trace Ingress Port. See E-Trace specification for details of
encoding of these values.

Table 22. Register: trTeFilter??: Trace Encoder Filter Registers (trBaseEncoder+0x400..0x5FF)

Address Offset Register Name Compliance Description

0x400 + 0x20*i trTeFilteriControl Optional Filter i control

0x404 + 0x20*i trTeFilteriMatchInst Optional Filter i instruction match control

0x408 + 0x20*i trTeFilteriMatchEcauseLow Optional Filter i Ecause match control (bits 31:0)

0x40C + 0x20*i trTeFilteriMatchEcauseHigh Optional Filter i Ecause match control (bits 63:32)

0x410 + 0x20*i trTeFilteriMatchValueImpdef Optional Filter i impdef value

0x414 + 0x20*i trTeFilteriMatchMaskImpdef Optional Filter i impdef mask

0x418 + 0x20*i trTeFilteriMatchData Optional Filter i Data trace match control

0x41C + 0x20*i  —  Optional Reserved

Table 23. Register: trTeComp??: Trace Encoder Comparator Registers (trBaseEncoder+0x600..0x6FF)

Address Offset Register Name Compliance Description

0x600 + 0x20*j trTeCompjControl Optional Comparator j control

0x604 + 0x20*j  —  Optional Reserved

0x608 + 0x20*j  —  Optional Reserved

0x60c + 0x20*j  —  Optional Reserved

0x610 + 0x20*j trTeCompjPmatchLow Optional Comparator j primary match (bits 31:0)

0x614 + 0x20*j trTeCompjPmatchHigh Optional Comparator j primary match (bits 63:32)

0x618 + 0x20*j trTeCompjSmatchLow Optional Comparator j secondary match (bits 31:0)

0x61C + 0x20*j trTeCompjSmatchHigh Optional Comparator j secondary match (bits 63:32)

6.3. Trace Encoder Filter Registers | Page 26

RISC-V Trace Control Interface Specification | © RISC-V International

Table 24. Register: trTeFilteriControl : Filter i Control Register (trBaseEncoder+0x400 + 0x20i)

Bit Field Description RW Reset

0 trTeFilterEnable Overall filter enable for filter #i WARL Undef

1 trTeFilterMatchPrivilege When set, match privilege levels specified by
trTeFilterMatchChoicePrivilege field for filter #i.

WARL Undef

2 trTeFilterMatchEcause When set, start matching from exception cause codes specified by
trTeFilterMatchChoiceEcause field for filter #i, and stop matching
upon return from the 1st matching exception.

WARL Undef

3 trTeFilterMatchInterrupt When set, start matching from either an interrupt or exception as
specified by trTeFilterMatchValueInterrupt field for filter #i, and stop
matching upon return from the 1st matching trap.

WARL Undef

4 trTeFilterMatchComp1 When set, the output of the comparator selected by trTeFilterComp1
must be true for the filter to match.

WARL Undef

7:5 trTeFilterComp1 Specifies the comparator unit to use for the 1st comparison. WARL Undef

8 trTeFilterMatchComp2 When set, the output of the comparator selected by trTeFilterComp2
must be true for the filter to match.

WARL Undef

11:9 trTeFilterComp2 Specifies the comparator unit to use for the 2nd comparison. WARL Undef

12 trTeFilterMatchComp3 When set, the output of the comparator selected by trTeFilterComp3
must be true for the filter to match.

WARL Undef

15:13 trTeFilterComp3 Specifies the comparator unit to use for the 3rd comparison. WARL Undef

16 trTeFilterMatchImpdef When set, match impdef values as specified by
trTeFilterMatchValueImpdef and trTeFilterMatchMaskImpdef fields for
filter #i.

WARL Undef

23:17  —  Reserved  —  0

24 trTeFilterMatchDtype When set, match dtype values as specified by
trTeFilterMatchChoiceDtype field for filter #i.

WARL Undef

25 trTeFilterMatchDsize When set, match dsize values as specified by
trTeFilterMatchChoiceDsize field for filter #i.

WARL Undef

31:26  —  Reserved  —  0



Handling of trTeFilterMatchEcause and trTeFilterMatchInterrupt should include a
count of nested traps. The size of the counter is implementation dependent. If the number
of nested traps exceeds the number that can be counted, the counter will saturate,
meaning that the filtering will turn off prematurely.

Table 25. Register: trTeFilteriMatchInst : Filter i Instruction Match Control Register
(trBaseEncoder+0x404 + 0x20i)

Bit Field Description RW Reset

7:0 trTeFilterMatchChoicePrivilege When trTeFilterMatchPrivilege field for filter #i is set, match
all privilege levels for which the corresponding bit is set. For
example, if bit N is 1, then match if the priv value at ingress
port is N. Setting several bits allow matching several
provileges.

WARL Undef

8 trTeFilterMatchValueInterrupt When trTeFilterMatchInterrupt field for filter #i is set, match
itype of 2 or 1 depending on whether this bit is 1 or 0
respectively.

WARL Undef

31:9  —  Reserved  —  0

6.3. Trace Encoder Filter Registers | Page 27

RISC-V Trace Control Interface Specification | © RISC-V International

Table 26. Register: trTeFilteriMatchEcauseLow : Filter i Ecause Match Control (low) Register
(trBaseEncoder+0x408 + 0x20i)

Bit Field Description RW Reset

31:0 trTeFilterMatchChoiceEcauseLow When trTeFilterMatchEcause field for filter #i is set, match all
excepion causes for which the corresponding bit is set. If bit N
is 1, then match if the ecause is N.

WARL Undef

Table 27. Register: trTeFilteriMatchEcauseHigh : Filter i Ecause Match Control (high) Register
(trBaseEncoder+0x40C + 0x20i)

Bit Field Description RW Reset

31:0 trTeFilterMatchChoiceEcauseHigh Stores bits 63:32 to allow matching of higher ecause codes. If
bit N is 1, then match if the ecause is N+32.

WARL Undef

Table 28. Register: trTeFilteriMatchValueImpdef : Filter i Impdef Match Value Register
(trBaseEncoder+0x410 + 0x20i)

Bit Field Description RW Reset

31:0 trTeFilterMatchValueImpdef When trTeFilterMatchimpdef field for filter #i is set, match if (impdef
& trTeFilterMatchMaskImpdef) == (trTeFilterMatchValueImpdef &
trTeFilterMatchMaskImpdef).

WARL Undef

Table 29. Register: trTeFilteriMatchMaskImpdef : Filter i Impdef Match Mask Register
(trBaseEncoder+0x414 + 0x20i)

Bit Field Description RW Reset

31:0 trTeFilterMatchMaskImpdef When trTeFilterMatchimpdef field for filter #i is set, match if (impdef
& trTeFilterMatchMaskImpdef) == (trTeFilterMatchValueImpdef &
trTeFilterMatchMaskImpdef).

WARL Undef

Table 30. Register: trTeFilteriMatchData : Filter i Data Match Control Register (trBaseEncoder+0x418 +
0x20i)

Bit Field Description RW Reset

15:0 trTeFilterMatchChoiceDtype When trTeFilterMatchDtype field for filter #i is set, match all data
access types for which the corresponding bit is set. For example, if bit
N is 1, then match if the dtype value is N.

WARL Undef

23:16 trTeFilterMatchChoiceDsize When trTeFilterMatchDsize field for filter #i is set, match all data
access sizes for which the corresponding bit is set. For example, if bit
N is 1, then match if the dsize value is N.

WARL Undef

31:24  —  Reserved  —  0

6.3. Trace Encoder Filter Registers | Page 28

RISC-V Trace Control Interface Specification | © RISC-V International

Table 31. Register: trTeCompjControl : Comparator j Control Register (trBaseEncoder+0x600 + 0x20j)

Bit Field Description RW Reset

1:0 trTeCompPInput Determines which input to compare against the primary comparator.
0: iaddr
1: context
2: tval
3: daddr

WARL Undef

3:2 trTeCompSInput Determines which input to compare against the secondary
comparator. Same encoding as trTeCompPInput.

WARL Undef

6:4 trTeCompPFunction Selects the primary comparator function. Primary result is true if
input selected via trTeCompPInput is:
0: equal to trTeCompPMatch
1: not equal to trTeCompPMatch
2: less than trTeCompPMatch
3: less than or equal to trTeCompPMatch
4: greater than trTeCompPMatch
5: greater than or equal to trTeCompPMatch
6: Result always false (input ignored). Prime latch to 1 if
trTeCompMatchMode is 3
7: Result always true (input ignored)

WARL Undef

7  —  Reserved  —  0

10:8 trTeCompSFunction Selects the secondary comparator function. Secondary result is true if
input selected via trTeCompSInput is:
0: equal to trTeCompSMatch
1: not equal to trTeCompSMatch
2: less than trTeCompSMatch
3: less than or equal to trTeCompSMatch
4: greater than trTeCompSMatch
5: greater than or equal to trTeCompSMatch
6: Result always true (input ignored). Use trTeCompSMatch as a mask for
trTeCompPMatch
7: Result always true (input ignored)

WARL Undef

11  —  Reserved  —  0

13:12 trTeCompMatchMode Selects the match condition used to assert the overall comparator
output
0: primary result true
1: primary and secondary result both true: (P && S)
2: Either primary or secondary result does not match: !(P && S)
3: Set when primary result is true and continue to assert until
instruction after secondary result is true

WARL Undef

14 trTeCompPNotify Generate a trace packet explicitly reporting the address of the final
instruction in a block that causes a primary match. This is also known
as a watchpoint. Requires trTeCompPInput to be 0, and has no effect
otherwise.

WARL Undef

15 trTeCompSNotify Generate a trace packet explicitly reporting the address of the final
instruction in a block that causes a secondary match. This is also
known as a watchpoint. Requires trTeCompSInput to be 0, and has no
effect otherwise.

WARL Undef

31:16  —  Reserved  —  0


Comparisions are performed as unsigned numbers. Only bits from an input signal (as
defined by trTeCompPInput and/or trTeCompSInput fields), should be compared. Additional
most significant bits from the trTeCompjPMatchLow/High registers must be ignored.

6.3. Trace Encoder Filter Registers | Page 29

RISC-V Trace Control Interface Specification | © RISC-V International

Table 32. Register: trTeCompjPMatchLow : Comparator j Primary match (low) Register
(trBaseEncoder+0x610 + 0x20j)

Bit Field Description RW Reset

31:0 trTeCompPMatchLow The match value for the primary comparator (bits 31:0). WARL Undef

Table 33. Register: trTeCompjPMatchHigh : Comparator j Primary match (high) Register
(trBaseEncoder+0x614 + 0x20j)

Bit Field Description RW Reset

31:0 trTeCompPMatchHigh The match value for the primary comparator (bits 63:32). WARL Undef

Table 34. Register: trTeCompjSMatchLow : Comparator j Secondary match (low) Register
(trBaseEncoder+0x618 + 0x20j)

Bit Field Description RW Reset

31:0 trTeCompSMatchLow The match value for the secondary comparator (bits 31:0). WARL Undef

Table 35. Register: trTeCompjSMatchHigh : Comparator j Secondary match (high) Register
(trBaseEncoder+0x61C + 0x20j)

Bit Field Description RW Reset

31:0 trTeCompSMatchHigh The match value for the secondary comparator (bits 63:32). WARL Undef

6.3. Trace Encoder Filter Registers | Page 30

RISC-V Trace Control Interface Specification | © RISC-V International

Chapter 7. Trace RAM Sink

Trace RAM Sink may be instantiated or configured to support storing trace into dedicated SRAM or
system memory. SRAM mode is using dedicated local memory inside of RAM sink, while system
memory mode (SMEM mode) is accessing memory via system bus (care should be taken to not
overwrite application code or data - it is usually done by reserving part of system memory for trace).
Dedicated SRAM memory must be read via dedicated trRamData register, while memory in SMEM
mode should be read as any other memory on system bus - for example using SBA (System Bus
Access) access mode as defined in the RISC-V Debug Specification.

Trace data is placed in memory in LSB order (first byte of trace packet/data is placed on LSB).

Be aware that in case trace memory wraps around some protocols may require additional
synchronization data - it is usually done by periodically generating a sequence of alignment
synchronization bytes which cannot be part of any valid packet. Specification of each trace protocol
must define it.

Table 36. Register: trRamControl: Trace RAM Sink Control Register (trBaseRam+0x000)

Bit Field Description RW Reset

0 trRamActive Primary activate/reset bit for Trace RAM Sink. When 0, the Trace
RAM Sink may have clocks gated off or be powered down, and other
register locations may be inaccessible. Hardware may take an
arbitrarily long time to process power-up and power-down and will
indicate completion when the read value of this bit matches what was
written. See Reset and Discovery chapter for more details.

RW 0

1 trRamEnable 1: Trace RAM Sink enabled. Setting trRamEnable to 0 flushes any
queued trace data to memory (idle bytes/packet may be appended
after the last message/packet to assure memory access alignment). See
Enabling and Disabling chapter for more details. Enabling trace
CANNOT change any of trRamStart/Limit/WP/RP?? registers. Disabling
trace may update trRamWP?? because of flushing.

RW 0

2  —  Reserved  —  0

3 trRamEmpty Reads 1 when Trace RAM Sink internal buffers are empty, which
means that all trace data is flushed.

RO 1

4 trRamMode 0: This RAM Sink will operate in SRAM mode
1: This RAM Sink will operate in SMEM mode

WARL Undef

7:5  —  Reserved  —  0

8 trRamStopOnWrap 1: Disable storing trace to RAM (trRamEnable → 0) when the circular
buffer gets full. Sink should stop accepting new messages which may
result in an overflow or stall condition at an encoder.

WARL Undef

10:9 trRamMemFormat 0: Memory is formatted as plain bytes
1-2: Reserved for future formats
3: Reserved for custom memory format

WARL Undef

11  —  Reserved  —  0

14:12 trRamAsyncFreq 0: Alignment synchronization (Async) packets disabled (may be the
only choice for some protocols)
1-7: Different levels of alignment synchronization (bigger number,
bigger distance).
Details should be defined in the specification of each trace protocol.

WARL Undef

31:15  —  Reserved  —  0

Chapter 7. Trace RAM Sink | Page 31

RISC-V Trace Control Interface Specification | © RISC-V International

Table 37. Register: trRamImpl: Trace RAM Sink Implementation Register (trBaseRamSink+0x004)

Bit Field Description RW Reset

3:0 trRamVerMajor Trace RAM Sink Component Major Version. Value 1 means the
component is compliant with this document.

RO 1

7:4 trRamVerMinor Trace RAM Sink Component Minor Version. Value 0 means the
component is compliant with this document.

RO 0

11:8 trRamCompType Trace RAM Sink Component Type (RAM Sink) RO 0x9

12 trRamHasSRAM This RAM Sink supports SRAM mode RO SD

13 trRamHasSMEM This RAM Sink supports SMEM (System Memory) mode RO SD

23:14  —  Reserved for future versions of this standard  —  0

31:24  —  Reserved for vendor specific implementation details  —  SD


Single RAM Sink may support both SRAM and SMEM modes, but not both may be enabled
at the same time. It is also possible to have more than one RAM Sink in a system.

Table 38. Register: trRamStartLow: Trace RAM Sink Start Register (trBaseRamSink+0x010)

Bit Field Description RW Reset

1:0  —  Always 0 (two LSB of 32-bit address) RO 0

31:2 trRamStartLow Byte address of start of trace sink circular buffer. It is always aligned
on at least a 32-bit/4-byte boundary. An SRAM sink will usually have
trRamStartLow fixed at 0.

WARL Undef
or fixed
to 0

For a bus with an address larger than 32-bit, corresponding High registers define the MSB part of such
a larger address.

Table 39. Register: trRamStartHigh: Trace RAM Sink Start High Bits Register (trBaseRamSink+0x014)

Bit Field Description RW Reset

31:0 trRamStartHigh High order bits (63:32) of trRamStart register. WARL Undef

Table 40. Register: trRamLimitLow: Trace RAM Sink Limit Register (trBaseRamSink+0x018)

Bit Field Description RW Reset

1:0  —  Always 0 (two LSB of 32-bit address) RO 0

31:2 trRamLimitLow Highest absolute 32-bit part of address of trace circular buffer. The
trRamWP register is reset to trRamStart after a trace word has been
written to this address.

WARL Undef

Table 41. Register: trRamLimitHigh: Trace RAM Sink Limit High Bits Register (trBaseRamSink+0x01C)

Bit Field Description RW Reset

31:0 trRamLimitHigh High order bits (63:32) of trRamLimit register. WARL Undef

Table 42. Register: trRamWPLow: Trace RAM Sink Write Pointer Register (trBaseRamSink+0x020)

Bit Field Description RW Reset

0 trRamWrap Set to 1 by hardware when trRamWP wraps. It is only set to 0 if
trRamWPLow is written

WARL Undef

1  —  Always 0 (bit B1 of 32-bit address) RO 0

31:2 trRamWPLow Absolute 32-bit part of address in trace sink memory where next trace
message will be written. Fixed to a natural boundary. After a trace
word write occurs while trRamWP = trRamLimit, trRamWP is set to
trRamStart.

WARL Undef

Chapter 7. Trace RAM Sink | Page 32

RISC-V Trace Control Interface Specification | © RISC-V International

Table 43. Register: trRamWPHigh: Trace RAM Sink Write Pointer High Bits Register
(trBaseRamSink+0x024)

Bit Field Description RW Reset

31:0 trRamWPHigh High order bits (63:32) of trRamWP register. WARL Undef

Table 44. Register: trRamRPLow: Trace RAM Sink Read Pointer Register (trBaseRamSink+0x028)

Bit Field Description RW Reset

1:0  —  Always 0 (two LSB of 32-bit address) RO 0

31:2 trRamRPLow Absolute 32-bit part of address in trace circular memory buffer visible
through trRamData. trRamRP auto-increments following an access to
trRamData. After a trace word read occurs while trRamRP = trRamLimit,
trRamRP is set to trRamStart. Required for SRAM mode and optional for
SMEM mode.

WARL Undef

Table 45. Register: trRamRPHigh: Trace RAM Sink Read Pointer High Bits Register
(trBaseRamSink+0x02C)

Bit Field Description RW Reset

31:0 trRamRPHigh High order bits (63:32) of trRamRP register. WARL Undef

Table 46. Register: trRamData: Trace RAM Sink Data Register (trBaseRamSink+0x040)

Bit Field Description RW Reset

31:0 trRamData Read (and optional write) value for trace sink memory access. SRAM is
always accessed by 32-bit words through this path regardless of the
actual width of the sink memory. Required for SRAM mode and
optional for SMEM mode.

R or
RW

Undef



When trace capture was wrapped around (trRamWrap = 1) beginning of trace is not
available and oldest packets/messages in the trace buffer (starting at address in trRamWP)
will most likely not be complete. Trace decoders must look for the start of a message. Also
when trace is stopped on wrap around, the very last message recorded in trace memory
may not be complete.

The table below shows typical Trace RAM Sink configurations. Implementing other configurations is
not suggested as trace tools may not support it without adjustments.

Table 47. Typical Trace RAM Sink Configurations

Mode trRamStart trRamLimit trRamWP trRamRP trRamData

SRAM 0 Hard coded to max size (2^M - A) at
reset, but can be possibly trimmed

Required Required Required

SMEM
Generic

Any (2^N aligned) Any (trRamStart + 2^M - A) - must be
set by trace tool

Required Not implemented Not implemented

SMEM
Fixed

Fixed (2^N aligned) Fixed to max size at reset (trRamStart +
2^M - A), but can be possibly trimmed

Required Not implemented Not implemented



Value A means alignment which depends on memory access width. If we have memory
access width of 32-bits, A=4 and value of trRamLimit register should be 0x…FC. Some
implementations may impose bigger alignment of trace data (to allow more efficient
transfer rates) for SMEM mode. For SRAM mode A must be 4 as access to trace via
trRamData is always 32-bits wide.

Chapter 7. Trace RAM Sink | Page 33

RISC-V Trace Control Interface Specification | © RISC-V International

7.1. Accessing and Detecting RAM Sink Registers

Trace tool should start interacting with Trace RAM Sink by releasing RAM Sink from reset by setting
trRamActive = 1 and waiting for this bit to be set. After that it should verify trRamEmpty = 1, read
trRamImpl and verify trRamCompType and trRamVer?? fields. Values of trRamHasSRAM/SMEM fields will
provide main types of RAM Sink being implemented.

Later trRamMode should be set (depending on desired RAM Sink mode). It is important to set this field
first as other registers may behave differently for SRAM and SMEM modes.

In SRAM mode, the trace memory is dedicated for trace storage and trRamStart?? registers should not
be settable (usually both not implemented and return 0). trRamLimitLow register may be either
hardcoded (to reflect physical SRAM size) or writable (allowing trimming RAM size allowing faster
wrap-around or sharing the same memory with some other components in the system). The
trRamLimitHigh register should not be implemented as it is not practical to have more than 4GB of
dedicated on-chip RAM storage.

Detection of valid ranges of each trRamStart?? and trRamLimit?? registers should be performed by
writing 0 and 0xFFFFFFFF. After setting 0, the lowest possible value must be set. After setting
0xFFFFFFFF the highest possible value must be set. If the highest value for trRamStartHigh or
trRamLimitHigh is 0, it means the register is NOT implemented.

Some implementations may provide different limits for different start addresses, so the trace tool
should always set trRamStart?? registers first - this option can be used when a particular
implementation has two different RAM regions (each with different physical memory size).

Not every value may be settable in trRamStart/Limit registers. Value written may be trimmed (for
example aligned on a particular 2^N boundary) and a trace tool should verify values being written. In
case accepted values are different from what was provided by the user, a message should be printed
which may allow the user to adjust (possbly suboptimal) settings.

Registers trRamStart?? and trRamLimit?? are usually set at the beginning of a debug/trace session and
never changed.



In SMEM mode (trRamMode = 1) trace tool should never set trRamStart?? and
trRamLimit?? registers outside of range provided by the user as otherwise raw trace being
written to memory may corrupt running code and/or data or stack. This type of errors may
be very difficult to diagnose as in complex system code (or data) being overwritten by trace
may be used way, way later after actual corruption was made.

Having both trRamStart/Limit?? registers set, the tool should try to set trRamRP?? to the same value as
trRamLimit??. If it is settable, it means that the trRamData register should be used to read the trace.
Otherwise collected trace must be read using normal, physical memory accesses (in range defined by
trRamStart/Limit?? registers).

Before enabling RAM Trace Sink (by setting trRamEnable = 1) the trace tool should set trRamWP??
registers (usually to the same values as in trRamStart?? register). Enabling trace must NOT change any
of trRamStart/Size/WP/RP?? registers. Just after the trace is enabled trRamWP?? may change because of
trace being added to trace memory.

After trace is enabled and active (trRamEnable = 1 or trRamEmpty = 0), the trace tool should NOT write
any of trRamStart/Limit/WP?? registers.

Setting trRamRP and reading trRamData may be attempted while trace is active, but support for reading

7.1. Accessing and Detecting RAM Sink Registers | Page 34

RISC-V Trace Control Interface Specification | © RISC-V International

SRAM trace while trace is active may not always be implemented. In such a case write to trRamRP must
be ignored and trRamData read must not advance trRamRP. Reading the trace in the SMEM mode via
normal memory reads is always allowed.



Even if reading trace (while trace is active) is implemented, circular trace buffer may be
overwritten even several times, so values being read by trRamData will be of no use.
However, when trace is started/stopped by infrequent triggers, reading SRAM trace may
be useful. Also, the very last packet in memory may be incomplete as the last trace word
may be buffered inside (and trRamEmpty = 0 will be observed).


Trace RAM Sink may implement writing trace by writing to trRamData, but this mode is
usable only for testing, so will most likely not be implemented. Trace tool is not required to
support writing to the trRamData register.

7.1. Accessing and Detecting RAM Sink Registers | Page 35

RISC-V Trace Control Interface Specification | © RISC-V International

Chapter 8. Trace Funnel

The Trace Funnel combines messages/packets from multiple sources into a single trace stream. It is
implementation dependent how many incoming messages/packets are accepted before it is switching
to another input source and in what order. But a continuous stream of messages/packets at one input
cannot cause other inputs to not be handled. Suggested implementation would be to process just a
single message/packet from each input in a round-robin fashion.

Table 48. Register: trFunnelControl: Trace Funnel Control Register (trBaseFunnel+0x000)

Bit Field Description RW Reset

0 trFunnelActive Primary activate/reset bit for trace funnel. When 0, the Trace Funnel
may have clocks gated off or be powered down, and other register
locations may be inaccessible. Hardware may take an arbitrarily long
time to process power-up and power-down and will indicate
completion when the read value of this bit matches what was written.
See Reset and Discovery chapter for more details.

RW 0

1 trFunnelEnable 1: Trace Funnel enabled. Setting trFunnelEnable to 0 flushes any
queued trace data to output. See Enabling and Disabling chapter for
more details.

RW 0

2  —  Reserved  —  0

3 trFunnelEmpty Reads 1 when Trace Funnel internal buffers are empty RO 1

31:4  —  Reserved  —  0

Table 49. Register: trFunnelImpl: Trace Funnel Implementation Register (trBaseFunnel+0x004)

Bit Field Description RW Reset

3:0 trFunnelVerMajor Trace Funnel Component Major Version. Value 1 means the
component is compliant with this document.

RO 1

7:4 trFunnelVerMinor Trace Funnel Component Minor Version. Value 0 means the
component is compliant with this document.

RO 0

11:8 trFunnelCompType Trace Funnel Component Type (Trace Funnel) RO 0x8

23:12  —  Reserved for future versions of this standard  —  0

31:24  —  Reserved for vendor specific implementation details  —  SD

Table 50. Register: trFunnelDisInput: Disable Individual Funnel Inputs (trBaseFunnel+0x008)

Bit Field Description RW Reset

15:0 trFunnelDisInput 1: Funnel input #n (bit position in register) is disabled. Incoming
messages are read from diabled input but discarded.

WARL Undef

31:16  —  Reserved  —  0



trFunnelDisInput register is optional. When not implemented (or never set) it will read as
0, which means that all inputs are always enabled. When implemented, it can be set to
0xFFFF to detect which inputs may be disabled in that trace funnel. Disabling inputs is
needed when a single trace encoder may provide output to more than one possible active
destination/sink. This register can be also used by trace tools to easily configure a trace in
complex systems. Without the ability to disable individual funnel inputs, the trace tool
must assure all trace sources which should not be traced are disabled.

8.1. Timestamp Unit

Trace Funnel may optionally include Timestamp Unit. It is described inside of the Trace Encoder
chapter above.

8.1. Timestamp Unit | Page 36

RISC-V Trace Control Interface Specification | © RISC-V International

Chapter 9. Trace PIB Sink

Trace data may be sent to chip pins through an interface called the Pin Interface Block (PIB). This
interface typically operates at a few hundred MHz and can sometimes be higher with careful
constraints and board layout or by using LVDS or other high-speed signal protocol. PIB may consist of
just one signal and in this configuration may be called SWT (Serial-Wire Trace). Alternative
configurations include a trace clock (TRC_CLK) and 1/2/4/8/16 parallel trace data signals
(TRC_DATA) timed to that trace clock. WARL register fields are used to determine specific PIB
capabilities.

The modes and behavior described here are intended to be compatible with trace probes available in
the market.

PIB Register Interface

Table 51. Register: trPibControl: PIB Sink Control Register (trBasePib+0x000)

Bit Field Description RW Reset

0 trPibActive Primary activate/reset bit for PIB Sink component. When 0, the PIB
Sink may have clocks gated off or be powered down, and other register
locations may be inaccessible. Hardware may take an arbitrarily long
time to process power-up and power-down and will indicate
completion when the read value of this bit matches what was written.
See Reset and Discovery chapter for more details.

RW 0

1 trPibEnable 0: PIB does not accept input but holds output(s) at idle state defined
by pibMode.
1: Enable PIB to generate output.
See Enabling and Disabling chapter for more details.

RW 0

2  —  Reserved  —  0

3 trPibEmpty Reads 1 when PIB internal buffers are empty. RO 1

7:4 trPibMode Select mode for output pins. Allowed values are described in the
Allowed PIB Configurations table below.

WARL Undef

8 trPibClkCenter In parallel modes, adjust TRC_CLK timing to the center of the bit
period. This can be set only if trPibMode selects one of the parallel
protocols.

WARL Undef

9 trPibCalibrate Set this to 1 to generate a repeating calibration pattern to help tune a
probe’s signal delays, bit rate, etc. In this mode input to the sink is not
consumed. The calibration pattern is described below.

WARL Undef

11:10  —  Reserved  —  0

14:12 trPibAsyncFreq 0: Alignment synchronization (Async) packets disabled (may be the
only choice for some protocols)
1-7: Different levels of alignment synchronization (bigger number,
bigger distance).
Details should be defined in the specification of each trace protocol.

WARL Undef

15  —  Reserved  —  0

31:16 trPibDivider Timebase selection for the PIB module. The input clock is divided by
trPibDivider + 1. PIB data is sent at either this divided rate or 1/2 of
this rate, depending on trPibMode. Width is implementation
dependent. After the PIB reset value of this field should be set to safe
(not too fast clock) setting for a particular SoC. Trace tools may set
smaller values to utilize higher bandwidth.

WARL Undef

Chapter 9. Trace PIB Sink | Page 37

RISC-V Trace Control Interface Specification | © RISC-V International

Table 52. Register: trPibImpl: Trace PIB Implementation Register (trBasePib+0x004)

Bit Field Description RW Reset

3:0 trPibVerMajor Trace PIB Sink Component Major Version. Value 1 means the
component is compliant with this document.

RO 1

7:4 trPibVerMinor Trace PIB Sink Component Minor Version. Value 0 means the
component is compliant with this document.

RO 0

11:8 trPibCompType Trace PIB Sink Component Type (PIB Sink) RO 0xA

23:12  —  Reserved for future versions of this standard  —  0

31:24  —  Reserved for vendor specific implementation details  —  SD

Software can determine what modes are available by attempting to write each mode setting to the
WARL field trPibMode and reading back to see if the value was accepted.

Table 53. Allowed PIB Configurations

Mode trPibMode trPibClkCenter Bit rate

Off 0 X  — 

SWT Manchester 4 X 1/2

SWT UART 5 X 1

TRC_CLK + 1 TRC_DATA 8 0 1

TRC_CLK + 2 TRC_DATA 9 0 1

TRC_CLK + 4 TRC_DATA 10 0 1

TRC_CLK + 8 TRC_DATA 11 0 1

TRC_CLK + 16 TRC_DATA 12 0 1

TRC_CLK + 1 TRC_DATA 8 1 1/2

TRC_CLK + 2 TRC_DATA 9 1 1/2

TRC_CLK + 4 TRC_DATA 10 1 1/2

TRC_CLK + 8 TRC_DATA 11 1 1/2

TRC_CLK + 16 TRC_DATA 12 1 1/2

Since the PIB supports many different modes, it is necessary to follow a particular programming
sequence:

• Activate the PIB by setting trPibActive.

• Set the trPibMode, trPibDivider, trPibClkCenter, and trPibCalibrate fields. This will set the
TRC_DATA outputs to the quiescent state (whether that is high or low depends on trPibMode) and
start TRC_CLK running.

• Activate the receiving device, such as a trace probe. Allow time for PLL to sync up, if using a PLL
with a parallel PIB mode.

• Set trPibEnable. This enables the PIB to generate output either immediately (calibration mode) or
when the Trace Encoder or Trace Funnel begins sending trace messages/packets.

9.1. Order of bits and bytes

• Trace messages/packets are considered as sequences of bytes and are always transmitted with least
significant bits/bytes first.

• In 16-bit mode (trPibMode == 12) the byte transmitted on bits #0-#7 is considered first and most

9.1. Order of bits and bytes | Page 38

RISC-V Trace Control Interface Specification | © RISC-V International

significant bits#8-#15 are transmitting second byte.

• Idle sequences (no message/packet to be sent) are transmitted between messages.

◦ Idle sequence depends on trace protocol and must allow detection of the start of first byte of
message/packet following the idle sequence.

◦ Idle sequences may be different and should be defined by trace protocols.

9.2. PIB Parallel Protocol

Traditionally, off-chip trace has used this protocol. There are several parallel data signals
(TRC_DATA0..15) and one continuously-running trace clock (TRC_CLK). The data rate of parallel
signals can be much higher than either of the serial-wire protocols.

This protocol is oriented to send full, variable length trace messages/packets rather than fixed-width
trace words.

When a message start is detected, this sample and possibly the next few (depending on the width of
TRC_DATA) are collected until a complete byte has been received. Bytes are transmitted least
significant bit first, with TRC_DATA[0] representing the least significant bit in each beat of data. The
receiver continues collecting bytes until a complete message has been received. The criteria for this
depends on the trace format. After the last byte of a message, the data signals may then go to their idle
state or a new message may begin in the next trace clock edge.

9.2.1. PIB Clock Center

The trace clock, TRC_CLK, normally has edges coincident with the TRC_DATA edges. Typically, a
trace probe will delay trace data or use a PLL to recover a sampling clock that is twice the frequency of
TRC_CLK and shifted 90 degrees so that its rising edges occur near the center of each bit period. If
the PIB implementation supports it, the debugger can set trPibClkCenter to change the timing of
TRC_CLK so that there is a TRC_CLK edge at the center of each bit period on TRC_DATA. Note that
this option cuts the data rate in half relative to normal parallel mode and still requires the probe to
sample TRC_DATA on both edges of TRC_CLK.

This example shows 8-bit parallel mode with trPibClkCenter = 0 transmitting a 5-byte message/packet
followed by a 2-byte message/packet.

9.2. PIB Parallel Protocol | Page 39

RISC-V Trace Control Interface Specification | © RISC-V International

And an example showing 8-bit parallel mode transmitting a 4-byte packet with trPibClkCenter = 1

9.3. SWT Manchester Protocol

In this mode, the PIB outputs complete trace messages encapsulated between a start bit and a stop bit.
Each bit period is divided into 2 phases and the sequential values of the TRC_DATA[0] pin during
those 2 phases denote the bit value. Bits of the message are transmitted LSB first. The idle state of
TRC_DATA[0] is low in this mode.

Table 54. Manchester Encoding Patterns

Bit Phase 1 Phase 2

start 1 0

logic 0 0 1

logic 1 1 0

stop/idle 0 0

9.4. SWT UART Protocol

In UART protocol, the PIB outputs bytes of a trace message encapsulated in a 10-bit packet consisting
of a low start bit, 8 data bits, LSB first, and a high stop bit. Another packet may begin immediately
following the stop bit or there may be an idle period between packets. When no data is being sent,
TRC_DATA[0] is high in this mode.

9.3. SWT Manchester Protocol | Page 40

RISC-V Trace Control Interface Specification | © RISC-V International

9.5. Calibration Mode

In optional calibration mode, the PIB transmits a repeating pattern. Probes can use this to
automatically tune input delays due to skew on different PIB signal lines and to adjust to the
transmitter’s data rate (trPibDivider and trPibClkCenter). Calibration patterns for each mode are listed
below.

Table 55. PIB Calibration Patterns

Mode Calibration Bytes Wire Sequence

UART, Manchester AA 55 00 FF alternating 1/0, then all 0, then all 1

1-bit parallel AA 55 00 FF alternating 1/0, then all 0, then all 1

2-bit parallel 66 66 CC 33 2, 1, 2, 1, 2, 1, 2, 1, 0, 3, 0, 3, 3, 0, 3, 0

4-bit parallel 5A 5A F0 0F A, 5, A, 5, 0, F, F, 0

8-bit parallel AA 55 00 FF AA, 55, 00, FF

16-bit parallel AA AA 55 55 00 00 FF FF AAAA, 5555, 0000, FFFF



Calibration mode may be used even by probes which do not support calibration of trace
just to assure trace routing on PCB is correct and PIB is correctly enabled. It may be also
possible to use calibration mode to check trace signal routing from SoC using scope or
logic analyzer.

9.5. Calibration Mode | Page 41

RISC-V Trace Control Interface Specification | © RISC-V International

Chapter 10. Trace ATB Bridge

Some SoCs may have an Advanced Trace Bus (ATB) infrastructure to manage trace produced by other
components. In such systems, it may be desired to route entire RISC-V trace stream to the ATB
through an ATB Bridge. This module manages the interface to ATB, generating ATB trace records that
encapsulate RISC-V trace produced by the Trace Encoder[s] and/or Trace Funnel[s]. There is a control
register that includes trace on/off control and a field allowing software to set the ID to be used on the
ATB bus. This ID allows software to extract entire RISC-V trace from the combined trace. This
interface is compatible with AMBA 4 ATB v1.1.

Table 56. Register: trAtbBridgeControl: ATB Bridge Control Register (trAtbBridgeBase+0x000)

Bit Field Description RW Reset

0 trAtbBridgeActive Primary activate/reset for the ATB Bridge. When 0, the ATB Bridge
may have clocks gated off or be powered down, and other register
locations may be inaccessible. Hardware may take an arbitrarily long
time to process power-up and power-down and will indicate
completion when the read value of this bit matches what was written.
See Reset and Discovery chapter for more details.

RW 0

1 trAtbBridgeEnable 1: ATB Bridge enabled. Setting trAtbBridgeEnable to 0 flushes any
queued trace data to ATB. See Enabling and Disabling chapter for
more details.

RW 0

2  —  Reserved  —  0

3 trAtbBridgeEmpty Reads 1 when ATB Bridge internal buffers are empty RO 1

7:4  —  Reserved  —  0

14:8 trAtbBridgeID ID of this node on ATB. Values of 0x00 and 0x70-0x7F are reserved
by the ATB specification and should not be used.

RW Undef

31:15  —  Reserved  —  0

Table 57. Register: trAtbBridgeImpl: ATB Bridge Implementation Register (trAtbBridgeBase+0x004)

Bit Field Description RW Reset

3:0 trAtbBridgeVerMajor ATB Bridge Component Major Version. Value 1 means the component
is compliant with this document.

RO 1

7:4 trAtbBridgeVerMinor ATB Bridge Component Minor Version. Value 0 means the
component is compliant with this document.

RO 0

11:8 trAtbBridgeCompType ATB Bridge Component Type (ATB Bridge) RO 0xE

14:12 trAtbBridgeAsyncFreq 0: Alignment synchronization (Async) packets disabled (may be the
only choice for some protocols)
1-7: Different levels of alignment synchronization (bigger number,
bigger distance).
Details should be defined the specification of each trace protocol.

WARL Undef

23:15  —  Reserved for future versions of this standard  —  0

31:24  —  Reserved for vendor specific implementation details  —  SD

An implementation determines the data widths of the connection from the Trace Encoder or Trace
Funnel and of the ATB port.

ATB Bridge may optionally insert ATB alignment synchronization packets (controlled by
trAtbBridgeAsyncFreq field) allowing trace decoding software to detect ATB packet boundaries. Not all
protocols may require it.

Chapter 10. Trace ATB Bridge | Page 42

RISC-V Trace Control Interface Specification | © RISC-V International

Chapter 11. Additional Material

11.1. Minimal Implementation

This (non-normative) chapter gives an of what needs to be done to put together complete RISC-V trace
implementation without getting familiar with every detail of every register.

Minimal General Registers/Fields

These requirements are applicable to the entire trace sub-system.

• One Trace Encoder per hart being traced is required.

• At least one of Trace RAM or Trace PIB sinks or Trace ATB Bridge is required as the final
destination of an encoded RISC-V trace.

◦ Implementations providing custom transport only are NOT considered fully compliant with
this specification as custom trace tools will be needed.

• Each trace component in a system is required to implement tr??Control and tr??Impl registers.

◦ tr??Active bit must be settable to 0 or 1, although reset itself is NOT required.

◦ tr??Enable bit must be settable to 0 or 1 and must support flushing (if applicable) when
changed from 1 to 0.

◦ tr??Empty bit must read as 0 when the trace component has some trace data internally buffered
(if trace component it not buffering any trace data, this bit may be hard coded to 1).

◦ tr??VerMajor, tr??VerMinor and tr??CompType must be implemented.

Minimal Trace Encoder Register/Fields

• Bit trTeInstTracing must be implemented (to start/stop instruction trace output from Trace
Encoder).

• One of trTeInstMode = 3 (Baseline instruction trace) or 6 (Optimized instruction trace) must be
implemented (can be a hard coded value).

• At least one of the non-0 values of trTeInstSyncMode must be settable (or hard coded).

• Field trTeFormat must correspond to implemented trace protocol (0 for E-Trace or 1 for N-Trace).

• Fields trTeProtocolMajor and trTeProtocolMinor must return versions of implemented protocol.

• All other registers/fields/bits may be tied to 0.

Minimal Trace RAM Sink Register/Fields

SRAM mode only:

• Bit trRamHasSRAM must be tied to 1 and trRamMode must be tied to 0.

• Bit trRamWrap must be implemented.

• Register trRamLimitLow must be implemented but can be hard coded to value '2^M-4' (address
0x..FC).

• Register trRamWPLow must at least accept a write of 0.

• Register trRamRPLow must accept any 32-bit aligned value in inclusive range < 0 .. trRamLimitLow >.

◦ If width of access to SRAM is wider than 32-bits any 32-bit aligned value of trRamRP must be

11.1. Minimal Implementation | Page 43

RISC-V Trace Control Interface Specification | © RISC-V International

allowed and reads must be buffered.

• Register trRamData may be implemented for reading only.

• All other registers/fields/bits may be tied to 0.

SMEM mode only:

• Bit trRamHasSMEM must be tied to 1 and trRamMode must be tied to 1.

• Bit trRamWrap must be implemented.

• Register trRamStart must be implemented but can be hard coded to value '2^N' (address 0x..00).

• Register trRamLimit must be implemented but can be hard coded to value '2^N + 2^M-4' (address
0x..FC).

• Registers trRamWP must accept any 32-bit aligned value in inclusive range < trRamStart .. trRamLimit
>.

• All other registers/fields/bits may be tied to 0.

Minimal Trace PIB Sink Register/Fields

It is hard to define required mode as it depends on SoC bandwidth requirements and capabilities, but
some general guidance may be provided.

• 4-bit mode is supported by most (if not all) trace probes and less expensive MIPI20 connectors can
be used.

◦ 1-bit and 2-bit modes should be only used when there are critical constraints on the number of
MCU pins. Not all trace probes may support these modes.

• Serial mode should be only considered when either limited trace is required, or cores run slowly.
Not all trace probes may support this mode and max allowed speeds may vary.

◦ Manchester encoding is self-synchronizing and may provide a more reliable trace. However
UART mode may provide better bandwidth. It is suggested to support both.

• 8-bit and 16-bit modes will provide better bandwidth, but require a more expensive Mictor
connector and only more advanced trace probe models may support it.

• It is suggested to provide as fast as possible trace logic clock, and allow a trace tool to set the divider
in the trPibDivider field.

• For TRC_CLK frequencies higher than 50MHz, it is suggested to provide a calibration mode.

◦ If possible, implement trPibClkCenter for better flexibility.

Minimal ATB Bridge Register/Fields

• Field trAtbBridgeID must be settable by trace tool (hard coded ID may not be handled by all trace
tools).

11.1. Minimal Implementation | Page 44

RISC-V Trace Control Interface Specification | © RISC-V International

11.2. Reset and Discovery

This chapter describes what trace tools should do to reset and discover trace features.

 Trace tools must be provided with base addresses of all trace components.

Only the tr??Active and the tr??Enable bits are reset to 0 on power-up.

These tr??Active bits act as independent resets for the respected trace components:

• trTeActive - reset for Trace Encoder component (this will disable encoder from single hart)

• trFunnelActive - reset for Trace Funnel component

• trPibActive - reset for PIB component (resets Pin Interface Block only)

• trRamActive - reset for RAM component (resets RAM Sink only)

• trAtbBridgeActive - resets ATB Bridge component (resets ATB Bridge interface)

• trTsActive - resets the Timestamp Unit sub-component (resets timestamp generation logic)

When component is held in reset (tr??Active is 0), then tr??Enable bit must be reset to 0 as well (what
makes component disabled).

Releasing components from reset (by setting tr??Active to 1) may take time - debug tools should
monitor (with reasonable timeout) if the appropriate bit changed from 0 to 1.

As not all fields/registers are affected by reset (defined as Undef), the trace tools must initialize
(usually, a write of a value 0) several registers to assure that trace component is in a predictable state.



• Some of the reset values are defined as SD (system dependent) and these values should
reset as well and each time to the same value as would be after power-up.

• Most of fields/registers have Undef specified in reset behavior of the field. It should
not prevent some implementations from resetting these.

Reset and Discovery should be performed as follows:

• Reset the component by setting tr??Active = 0.

◦ This should be done by writing a value 0x0 to tr??Control register.

• Read-back and wait until tr??Active = 0 is read, which means that a component reached a reset
state.

• Release a component from reset by setting tr??Active = 1.

◦ This should be done by writing a value 0x1 to tr??Control register. This write will reset most of
other enable/mode bits in this register and all WARL and read-only fields will be set to
defaults.

• Read-back and wait until tr??Active = 1 is read, which means that a component was released from
reset.

◦ In this moment tr??Enable is set to 0 and the component is not yet enabled.

◦ Component clock should be enabled to allow programming of other registers.

• Optionally save tr??Control register as it holds all reset values of all fields. It may be
cached/shadowed, and trace tool may execute faster write-only (instead a read-modify-write)
operations.

11.2. Reset and Discovery | Page 45

RISC-V Trace Control Interface Specification | © RISC-V International

• Handle tr??VerMinor/Major as described in 'Versioning of Components' chapter.

◦ If tr??VerMajor is 0 (for Trace Encoder component) either handle it as pre-ratified/initial
version 0 or generate fatal error with an appropriate error message.

• Read tr??Impl and compare tr??ComType field with expected value.

• Set some WARL fields and read back to discover supported component configuration - make sure
the component is NOT enabled (by setting tr??Enable to 1) by mistake.

• Configure some initial values in all needed registers/fields. Optionally Read-back to assure these
are set properly.

The table below is showing what registers needs to be written to have each trace component in
identical, predictable state.

Table 58. Trace Components Reset

Component Register Write Notes

Trace Encoder trTeControl 0x1 Release from reset and set all defaults.

trTeInstFeatures 0x0 Force minimal sub-set of features.

trTeInstFilters 0x0 Disable all filters.

trTeDataControl 0x0 Disable data trace.

trTeDataFilters 0x0 Disable filters for data trace.

trTeTrigDbgControl 0x0 Disable all triggers from Debug module.

trTeTrigExtInControl 0x0 Disable all external trigger inputs.

trTeTrigExtOutControl 0x0 Do not general any external trigger outputs.

trTsControl 0x0 Keep timestamp unit in reset.

Trace Funnel trFunnelControl 0x1 Release from reset and set all defaults.

trFunnelDisInput 0x0 Make sure all inputs are enabled.

trTsControl 0x0 Keep timestamp unit in reset.

Trace RAM Sink trRamControl 0x1 Release from reset and set all defaults.

Trace PIB Sink trPibControl 0x1 Release from reset and set all defaults.

Trace ATB Bridge trAtbBridgeControl 0x1 Release from reset and set all defaults.

As we are dealing with several independent components, it is important to assure that the component
which is in reset (or powered down) is keeping its outputs on safe values, so garbage trace data is not
emitted.

In general, it is safer to power-up and enable components starting from sinks/bridges, followed by
Trace Funnels and Trace Encoders as last. Each implementation should test this sequence to assure
trace tools are working seamlessly.



Pre-release version of this specification specified that most of fields and registers were
reset. It was suggested (by Architecture Review Committee) that reset logic is made
minimal to follow RISC-V ISA style. Older implementations (which reset more bits) are still
compatible with a ratified version. These implementations do not have to change as it is
perfectly OK to reset more fields and registers.

11.2. Reset and Discovery | Page 46

RISC-V Trace Control Interface Specification | © RISC-V International

11.3. Enabling and Disabling

Enabling should work as follows:

• Release all needed components from reset by setting tr??Active = 1 as described above.

• Set desired mode and verify if that mode is set (regardless of discovery results).

• For RAM Sink:

◦ Setup needed addresses (if possible and desired) as these may not reset.

• For PIB Sink:

◦ Calibrate PIB (if possible and desired).

◦ Start physical trace capture (trace probe dependent).

• Configure RAM Sink/PIB Sink/ATB Bridge in appropriate mode.

◦ Verify if a particular mode is set.

• Set main enable for RAM Sink/PIB Sink/ATB Bridge component by setting tr??Enable = 1.

◦ Read back and wait for confirmation (tr??Enable = 1).

• Enable Trace Funnel[s] in the same way.

• Configure and Enable Trace Encoder[s] in the same way (last should be writing trTeEnable = 1
followed by reading to verify that it is set).

◦ The trTeInstMode WARL field should be set to 6 - it may revert to different mode.

• Either manually set trTeInstTracing=1 and/or trTeDataTracing=1 bits or set triggers to start the
trace.

• Start hart[s] to be traced (hart could be already running as well - in this case trace will be generated
in the moment when trTeInstTracing or trTeDataTracing bit is set).

• Periodically read trTeControl for status of trace (as it may stop by itself due to triggers).

◦ If RAM Sink was configured with trRamStopOnWrap = 1, read trRamEnable to see if RAM capture
was stopped.


Discovery may not be necessary to enable and test the trace during development of SoC.
However, a discovery must be possible and should be tested by SoC designer - this is
necessary for trace tools to work with that SoC without any customization.


Trace tools may verify a particular setting once per session, so subsequent starts of trace
may be faster.


Trace tools should provide configuration settings allowing more verbose logging mode
during discovery and initialization, so potential compatibility issues may be solved.

Disabling the trace should work as follows:

• It is essential to disable the trace from encoders associated with stopped harts as entering debug
mode is NOT flushing any trace pipelines.

• Disable and flush trace starting from Trace Encoders, then Trace Funnels and finally Trace Sinks
or Trace Bridges.

◦ Set tr??Enable = 0 and wait for tr??Enable = 0 and tr??Empty = 1 for each trace component.

11.3. Enabling and Disabling | Page 47

RISC-V Trace Control Interface Specification | © RISC-V International

◦ It is important to do it in that order as otherwise data may be lost.

• Stop physical capture if PIB sink was enabled (trace probe dependent).

• Read the trace.

◦ For RAM Trace Sink read trRamWP - depending on trRamWrap bit, you may read trace from two
ranges.

◦ For RAM Trace Sink in SRAM mode, set trRamRP and read trRamData multiple times.

◦ For RAM Trace Sink in SMEM mode, read trace from system memory using memory read.

◦ For PIB Trace Sink read trace from trace probe.

◦ For ATB Bridge, read trace using Coresight components (ETB/TMC/TPIU).

Decoding trace

• Decoder (in most cases) must have access to code which is running on device either by reading it
from device or from a file containing the code (binary/hex/srec/ELF).

• The trace collected by trace probes can be read and decoded while a trace is being captured (this is
called trace streaming mode).

◦ There is no guarantee that the last trace packet is completed until the trace is properly flushed
and disabled.

• Decoding of the trace should never affect code being traced.

11.4. Pre-ratified/Initial Interface Version

The value of trTeVerMajor as 0 means this is the pre-ratified/initial version of this trace control
interface.

Initially this specification was kept highly compatible, but after the decision to split all components
into 4K regions it was very hard to track and list all changes and appropriate chapter was removed.

The migration path from 'ver 0' (for both IP providers and tool vendors) should not be hard as the
main concepts remain unchanged.

Original donation from SiFive (which describes implementation of pre-ratified/initial version 0) can
be found here: RISC-V-Trace-Control-Interface-Proposed-20200612.pdf


Not all trace tools may support pre-ratified/initial version 0. But all such tools should
reject a version 0 with a very clear message.

11.4. Pre-ratified/Initial Interface Version | Page 48

RISC-V Trace Control Interface Specification | © RISC-V International

https://lists.riscv.org/g/tech-nexus/files/RISC-V-Trace-Control-Interface-Proposed-20200612.pdf

	RISC-V Trace Control Interface Specification
	Table of Contents
	Preamble
	Change Log
	Version 1.0_rc42

	Copyright and license information
	Contributors
	Chapter 1. Introduction
	1.1. Glossary

	Chapter 2. Trace Protocols and Trace Control
	Chapter 3. Trace System Overview
	3.1. Trace Encoder
	3.1.1. Branch Trace Messaging
	3.1.2. Branch History Messaging
	3.1.3. Other Optimizations

	3.2. Trace Sinks
	3.2.1. SRAM Sink
	3.2.2. System Memory Sink
	3.2.3. PIB Sink

	3.3. ATB Bridge
	3.4. Trace Funnel

	Chapter 4. Trace Control Interface Overview
	4.1. Trace Components
	4.1.1. Connections Between Components
	4.1.2. Example Component Connection Diagrams

	4.2. Accessing Trace Control Registers
	4.3. Trace Component Register Map
	4.3.1. Summary of Trace Encoder Registers
	4.3.2. Summary of Trace RAM Sink Registers
	4.3.3. Summary of Trace PIB Sink Registers
	4.3.4. Summary of Trace Funnel Registers
	4.3.5. Summary of Trace ATB Bridge Registers

	Chapter 5. Versioning of Components
	Chapter 6. Trace Encoder Control Interface
	6.1. Timestamp Unit
	6.2. Trace Encoder Triggers
	6.2.1. Debug Trigger Module
	6.2.2. External Trace Triggers
	6.2.3. Triggers Precedence

	6.3. Trace Encoder Filter Registers

	Chapter 7. Trace RAM Sink
	7.1. Accessing and Detecting RAM Sink Registers

	Chapter 8. Trace Funnel
	8.1. Timestamp Unit

	Chapter 9. Trace PIB Sink
	9.1. Order of bits and bytes
	9.2. PIB Parallel Protocol
	9.2.1. PIB Clock Center

	9.3. SWT Manchester Protocol
	9.4. SWT UART Protocol
	9.5. Calibration Mode

	Chapter 10. Trace ATB Bridge
	Chapter 11. Additional Material
	11.1. Minimal Implementation
	11.2. Reset and Discovery
	11.3. Enabling and Disabling
	11.4. Pre-ratified/Initial Interface Version

